Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Где df/dr– локальный градиент частот, c – скорость света.






О чём говорит это выражение? Прежде всего, оно подчёркивает непричастность масс к порождению тяготения, поскольку, как можно видеть, ускорение свободного падения не зависит от массы «силового притягивающего центра»: оно определяется лишь геометрией локального участка частотного склона.

Далее, из выражения (2.7.1) тривиально следует объяснение того факта, что, скажем, в одном и том же месте области действия тяготения Земли, различные тела имеют одно и то же ускорение свободного падения – независимо от их массы, формы, химического состава и агрегатного состояния. Эйнштейн придавал этому факту фундаментальное значение. Он полагал, что его теория объяснила этот фундаментальный факт. Там вышло вот что: в ньютоновском законе всемирного тяготения фигурирует т.н. гравитационная масса тела, а в выражении второго закона Ньютона – его инертная масса. Комбинация этих выражений даёт, что ускорение свободного падения тела прямо пропорционально отношению его гравитационной массы к инертной. А это отношение в каждом месте одинаково для различных малых тел – и пусть оно, мол, равно единице! Тогда, мол, всё сходится! Но у этого «объяснения» есть всего один недостаточек. Оно, может, и работало бы, если понятие «гравитационная масса» имело бы физический смысл – если массы обладали бы притягивающим действием. Но, как проиллюстрировано выше, это не так. А одинаковость ускорения свободного падения у разных тел обусловлена тем, что в любом месте крутизна частотного склона, порождающего тяготение, одинакова для всех. Поэтому, когда говорят, что эксперименты Этвёша, Дикке и Брагинского установили равенство инертной и гравитационной масс с точностью аж до двенадцатого знака, то надо понимать, что установили-то, с этой точностью, одинаковость ускорений свободного падения для различных тел, и ничего сверх этого. Согласно (2.7.1), идентичность этих ускорений, сообщаемых разным малым телам одним и тем же участком частотного склона – это по определению так. Не нужно здесь изображать заумную «фундаментальность»!

Ещё одно следствие из выражения (2.7.1) таково: на пробное тело действует не удалённый «силовой центр», а локальный градиент частот – поэтому тяготение действует без задержки во времени. Этот вывод несовместим с декларацией общей теории относительности о том, что «скорость действия тяготения очень велика, но больше скорости света она быть не может – значит, она равна скорости света». В насмешку над подобными декларациями, имеются надёжные экспериментальные факты, которые свидетельствуют о действии тяготения без задержки во времени. Так, Ван Фландерн обращает внимание на тот факт, что в уравнениях небесной механики скорость действия тяготения однозначно принимается бесконечной [Ф1], и, именно при этом, движение небесных тел описывается с огромной точностью – с погрешностями до нескольких угловых секунд за столетие. Если скорость действия тяготения была бы конечна, и на планету действовала бы сила тяготения, соответствующая не мгновенному положению планеты, а её некоторому предшествовавшему положению, то эта сила действовала бы нецентрально. Тогда орбиты планет эволюционировали бы, увеличивая свои средние радиусы – но ничего подобного не наблюдается. Исходя из этого, ещё Лаплас, основываясь на доступных ему данных астрономических наблюдений, сделал вывод о том, что нижнее ограничение на скорость действия тяготения превышает скорость света на 7 порядков [Л2]. Ещё более впечатляющие цифры получены уже в нашу эпоху – по результатам приёма импульсов пульсаров, расположенных на различных участках небесной сферы. На основе совместной пост-обработки последовательностей этих импульсов, находили текущий вектор скорости Земли, а затем, беря производную этого вектора по времени, находили текущий вектор ускорения Земли. Оказалось, что компонента этого вектора, обеспечивающая центростремительное ускорение Земли при её орбитальном движении, всегда направлена не к мгновенному видимому положению Солнца, а к его мгновенному истинному положению. Поперечный сдвиг «оптического Солнца», из-за задержки на распространение света, обнаруживается, а поперечный сдвиг «гравитационного Солнца», из-за запаздывания действия тяготения – не обнаруживается. В итоге Ван Фландерн сообщил о нижнем ограничении на скорость действия тяготения, которое превышает скорость света уже на 10 порядков [Ф1].

В этой связи нельзя не упомянуть про нашумевший эксперимент Копейкина-Фомалонта, которые заявили, что измерили «скорость гравитации» - наблюдая, с помощью нескольких радиотелескопов, сдвиг радиоизображения квазара при близком прохождении Юпитера. Авторы утверждали, что они обнаружили совпадение скорости гравитации со скоростью света в пределах точности 20% [К3, К4]. Свой результат они представили как «первое измерение скорости гравитации», как будто не было результатов ни Лапласа, ни Ван Фландерна. В статье [Г6] мы дали подробный анализ того, что делали Копейкин и Фомалонт. Мы обнаружили, что заявленный ими результат основан на сознательной имитации желаемого эффекта. Этим результатом ничуть не опровергается вывод о действии тяготения без запаздывания во времени – что находится в согласии с вышеназванными экспериментальными реалиями.

Здесь уместно упомянуть о весьма драматической, по своим смехотворным результатам, области физического эксперимента – ловле гравитационных волн. На что ловцы гравитационных волн надеялись, с завидным упорством строя свои детекторы в расчёте на то, что скорость этих волн равна скорости света? Неужто они надеялись на то, что сегодня мало кто знаком с трудами Лапласа?

Но вернёмся к выражению (2.7.1) и заметим, что оно даёт математически верное значение для крутизны частотного склона – это подтверждается опытом. Крутизна околоземного частотного склона была впервые измерена, с помощью мёссбауэровской спектроскопии, в 1959 г. Паундом и Ребкой [П2]. Правда, они неверно интерпретировали свой результат – полагая, что измерили «гравитационное красное смещение», т.е. гравитационный сдвиг частоты у гамма-квантов, движущихся вертикально. Они не приняли во внимание, что если источник и поглотитель находятся на разных высотах, то их спектральные линии имеют тот же самый взаимный гравитационный сдвиг [Л3]. Если ещё и гамма-кванты, при своём вертикальном движении, изменяли бы свою частоту, то итоговый эффект был бы удвоенный – а он был одинарный. Строго говоря, схема эксперимента Паунда и Ребки не позволяла сделать вывод об источнике обнаруженного эффекта: является ли он следствием взаимного сдвига линий источника и поглотителя, или следствием сдвига частоты гамма-квантов, движущихся по вертикали. Но в дальнейшем был проведен целый ряд экспериментов с перевозимыми атомными часами, в частности, многочисленные применения этих часов на бортах ИСЗ. Эти эксперименты убеждают нас в том, что гравитационные сдвиги квантовых уровней энергии в веществе непременно имеют место – причём, они в точности объясняют и результат Паунда и Ребки. Значит, эти авторы измерили не сдвиг частоты у гамма-квантов, а именно крутизну околоземного частотного склона. Действительно, при 22.5-метровой разнице высот расположения мёссбауэровских источника и поглотителя, относительная разность частот составила около 2.5× 10-15. Отношение второй из этих величин к первой, умноженное, согласно (2.7.1), на квадрат скорости света, даёт значение ускорения свободного падения на поверхности Земли.

Наконец, заметим, что локальный градиент частот (2.7.1) не только задаёт направление, в котором пробное тело приобретает ускорение свободного падения – градиент частот (2.7.1) обеспечивает также превращения энергии при свободном падении. При перемещении пробного тела вниз по местной вертикали, уменьшаются частоты его квантовых пульсаторов, т.е. уменьшается его масса, или собственная энергия. Эта убыль собственной энергии пробного тела идёт на приращение его кинетической энергии – чем энергетически обеспечено приобретение пробным телом ускорения свободного падения [Н1, Г7]. Чем круче частотный склон, тем больше величина этого ускорения (2.7.1).

 

 

Планетарные частотные воронки. Унитарное действие тяготения.

Совокупность окружающих планету частотных склонов представляет собой сферически-симметричную частотную яму, в центре которой удерживается планета. Геометрия этой частотной ямы такова, что для силы тяготения, действующей на малое пробное тело, имитируется известный закон обратных квадратов. Совокупность частотных склонов, порождающих планетарное тяготение, мы называем планетарной частотной воронкой. Будучи встроены в частотные склоны Солнца, планетарные частотные воронки имеют конечные размеры и выраженные границы (1.10, 1.11), за которыми – т.е. в межпланетном пространстве, не занятом частотными воронками планет – действует только солнечное тяготение.

Даже если солнечное тяготение действовало бы и в пределах планетарных частотных воронок, складываясь там с планетарным тяготением, то их совместное действие не могло бы обеспечить центростремительного ускорения планеты к Солнцу. По аналогии с изложенным в 2.6, участок солнечный склона, приходящийся на планетарную воронку, деформировал бы её – отчего возникало бы направленное к Солнцу воздействие на вещество планеты. Но ведь планета продолжала бы оставаться в деформированной воронке. Значит, если даже солнечный склон навёл бы «перекос» этой воронки, планета всего лишь заняла бы в ней новое положение равновесия – но центростремительного ускорения к Солнцу планета не имела бы, если его не имела бы сама планетарная частотная воронка [Г4].

А это уже очень интересно. Это приоткрывает тайну происхождения Солнечной системы. Ни одна из выдвинутых на эту тему научных гипотез, основанных на законе всемирного тяготения, не проясняет главного: каким это дивным образом планеты в своё время приобретали «правильные» векторы скорости, чтобы продолжать своё движение по, практически, круговым орбитам, радиусы которых зависят от их порядкового номера, подчиняясь эмпирическому правилу Тициуса-Боде [С3]. Мы же, с учетом вышеизложенного, приходим к выводу об искусственном устроении движения планет. Вещество планет просто удерживается в центрах планетарных частотных воронок – для которых организовано орбитальное движение вокруг Солнца. Организовано, конечно, чисто программными средствами [Г4] – да так, чтобы для ускорений планетарных частотных воронок к Солнцу и друг к другу имитировался закон обратных квадратов (см. также 4.14)!

И, в дополнение к этому чуду, имеются экспериментальные свидетельства о том, что в пределах планетарных частотных воронок, т.е. в областях действия планетарного тяготения, солнечное тяготение «отключено», т.е. планетарная частотная воронка не деформирована из-за наложения на неё соответствующего участка солнечного частотного склона. Так, убийственное свидетельство об «отключенности» солнечного тяготения в окрестностях Земли появилось с началом эры GPS. Если бы солнечное тяготение действовало здесь аддитивно с земным, то спутники GPS, движущиеся над дневной и ночной сторонами Земли, находились бы в неодинаковых гравитационных потенциалах. Соответственно, бортовые атомные часы на этих спутниках имели бы неодинаковые хода. Максимальная относительная разность этих ходов 2 a S R / c 2, где a S - ускорение свободного падения к Солнцу на радиусе орбиты Земли, R - радиус орбиты спутников GPS, c - скорость света, составляла бы величину около 3.5× 10-12. Такие вариации ходов бортовых часов GPS, с периодом около полусуток, были бы быстро и уверенно обнаружены – но о них не сообщается. А ведь если эти вариации имели бы место, то их интерпретация – через аддитивное действие земного и солнечного тяготений – не заставила бы себя ждать. Почему же об этих вариациях помалкивают? Ответ очевиден: потому что их нет. А, значит, нет и никакого «аддитивного» действия планетарного и солнечного тяготения.

Вместо этого, имеет место разграниченность областей действия солнечного и планетарных тяготений – малое пробное тело, где бы оно ни находилось, тяготеет либо только к планете, либо только к Солнцу (исключение – короткодействующее тяготение Луны, которое наложено на земное тяготение (2.12)). В организации действия тяготения по такому, унитарному, принципу мы усматриваем большой смысл. Вспомним, что превращения энергии в «цифровом» мире должны происходить однозначно (1.3). При свободном падении тела изменяется его кинетическая энергия, однозначное значение которой зависит от квадрата локально-абсолютной скорости тела. А эта скорость определяется по отношению к локальному участку частотного склона. Значит, для однозначности превращений энергии при свободном падении, пробное тело должно иметь одну локально-абсолютную скорость, т.е. находиться только на одном частотном склоне – а, значит, солнечные и планетарные частотные склоны не должны накладываться друг на друга.

Организация тяготения по унитарному принципу радикально упрощает не только мироустройство, но и расчёты движения малого тела – например, космического аппарата при межпланетном полёте. В рамках традиционного подхода, задача движения аппарата при его притяжении к нескольким силовым центрам – даже всего к двум! – уже не имеет аналитического решения. Унитарное же действие тяготения устраняет эту проблему. Где бы ни находился аппарат, он притягивается к одному силовому центру – и его движение описывается аналитически. Практика межпланетных полётов с очевидностью это подтверждает (1.10)!

С учётом вышеизложенного, происхождение планет нам представляется следующим образом. В солнечный частотный склон встраивали частотную воронку будущей планеты и приводили её в орбитальное движение вокруг Солнца, а затем в эту воронку «загружали» вещество, из которого формировалась планета. При такой технологии, в результате загрузки в готовую воронку даже крупнодисперсных глыб вещества, глобальная фигура формируемой планеты мало отличалась бы от шаровой (см. также 4.14).

В этой связи, мы не можем обойти молчанием такую аномалию в устройстве Солнечной системы, как отсутствие планетарной частотной воронки на орбите между Марсом и Юпитером. Согласно вышеупомянутому правилу Тициуса-Боде, там должна обращаться ещё одна планета, но вместо неё там имеет место пояс астероидов. Происхождение этого пояса астероидов официальная наука затрудняется объяснить. Действительно, чтобы развалить на обломки «гравитирующую» планету, следовало бы «совершить работу против сил гравитации». Это мог бы сделать достаточно мощный взрыв, но тогда разные обломки приобрели бы приращения к вектору орбитальной скорости, сильно различающиеся по величинам и направлениям. Поэтому траектории орбит обломков планеты, образовавшихся в результате её взрыва, имели бы огромный разброс параметров – и никакого пояса астероидов не было бы. Чтобы образовался пояс астероидов из планеты, её вещество должно было тихо рассредоточиться. Мы усматриваем здесь единственный разумный сценарий: по какой-то причине, частотная воронка планеты была отключена (ясно, что если программными манипуляциями возможно частотную воронку создать, то уничтожить её – тоже возможно). При этом вещество планеты могло рассредоточиться в результате срабатывания одних лишь сил упругости, до этого уравновешивавших силы гравитационного сжатия.

Что касается воззрений официальной науки на пояс астероидов, то она ухватилась за гипотезу о том, что астероиды – это строительный материал, из которого планета так и не сформировалась. Указывают даже причину такой неудачи: влияние, каким-то образом, сильного гравитационного поля Юпитера. Эта версия не выдерживает критики, если иметь в виду, что в Солнечной системе планетарные частотные воронки, а, значит, и области планетарного тяготения, не перекрываются друг с другом. Орбита пятой планеты недосягаема для области действия тяготения Юпитера, поэтому формированию пятой планеты Юпитер никак не мог помешать. В 2.10 мы проиллюстрируем это с особенной наглядностью.

 

 

Буферные слои на границах планетарных частотных воронок.

Вопрос о том, как организованы границы, разделяющие области планетарного и солнечного тяготения, заслуживает отдельного разговора. Если планетарные и солнечный частотные склоны порождаются чисто программными средствами, то и толщину переходного слоя – разделяющего планетарную частотную воронку и солнечный частотный склон – можно было задать программными средствами. Мы обращаем внимание на то, что, при малости толщины переходного слоя, прохождение сквозь него физических тел сопровождалось бы серьёзными проблемами. Эти проблемы связаны с тем, что неодинаковость локально-абсолютных скоростей у различных элементарных объёмчиков тела, пересекающего переходный слой, порождала бы механические напряжения в теле – и, при достаточно малой толщине переходного слоя, эти напряжения могли бы разрушить тело.

Проиллюстрируем это на примере влёта космического аппарата, запущенного с Земли, в область тяготения Марса. Энергетически наиболее выгодная траектория полёта к Марсу (т.н. гомановская, [Л4]) – это околосолнечный полуэллипс, с перигелием в области орбиты Земли и с афелием на орбите Марса. Гелиоцентрическая скорость аппарата, достигшего орбиты Марса, составляет при этом около 20 км/с, а орбитальная скорость Марса есть 24 км/с, и тогда влёт в марсианскую частотную воронку возможен лишь через переднюю полусферу её границы. Сразу после пересечения этой границы, планетоцентрическая скорость аппарата составит, по правилам векторного сложения [Л4], 4 км/с. Если толщина переходного слоя l была бы меньше, чем размер аппарата, то возникала бы ситуация, при которой части аппарата, находящиеся по внешнюю и по внутреннюю стороны переходного слоя, имели бы локально-абсолютные скорости, соответственно, V 0=20 км/с и V 1=4 км/с. Эквивалентное ускорение было бы равно a =(V 02- V 12)/2 l. Так, при l =1 м, это ускорение составило бы чудовищную величину 2× 108 м/с2, т.е. около 2× 107 g! В такой ситуации, аппарат разнесло бы в пыль.

Как нам представляется, для возможности более «мягкого» прохождения тел сквозь границу области планетарного тяготения, эта граница представляет собой довольно толстый буферный слой, на котором задано такое согласующее изменение локально-абсолютной скорости, чтобы результирующие механические напряжения были не слишком разрушительны. Сделаем оценку для толщины буферного слоя в центральной части передней полусферы частотной воронки Марса, которая обеспечивала бы пролёт объекта с

 

Рис.2.9

 

характерным размером L =100 м при механических напряжениях, соответствующих ускорению не более чем a max=5 g. Полный размах приращения локально-абсолютной скорости на толщине буферного слоя должен равняться орбитальной скорости Марса, т.е. V orb=24 км/с. Подчеркнём, что это приращение локально-абсолютной скорости, согласующее её значения по обе стороны от буферного слоя, возможно обеспечить лишь программными средствами! Пусть согласующая функция составлена из двух «встречных» ветвей одинаковых квадратичных парабол – ОВ и СВ (см. Рис.2.9). Здесь область отрицательных значений абсцисс соответствует области тяготения Марса, область абсцисс ОА соответствует буферному слою, область больших абсцисс – области солнечного тяготения. Наибольшая скорость изменения крутизны согласующей функции, приводящая к наибольшим механическим напряжениям в теле, приходится, очевидно, на центральную часть буферного слоя. Искомая результирующая толщина буферного слоя есть D = V orb(2 L / a max)1/2, для нашего случая она составляет около 84 км – что на четыре порядка меньше радиуса планетарной частотной воронки. Хотя этот результат выглядит правдоподобно, он имеет, конечно, исключительно ориентировочный характер.

Заметим, что буферный слой на границе планетарной частотной воронки может защищать планету от крупных астероидов. Параметры буферного слоя могут быть заданы таким образом, чтобы достаточно крупные астероиды, влетающие в область планетарного тяготения, разрушались на более мелкие фрагменты. Не исключено, что дробление астероидов или комет, на влёте в область планетарного тяготения, является одним из сценариев, по которому образуются метеорные потоки в Солнечной системе.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.012 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал