Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Малат-аспартатный челночный механизмСтр 1 из 2Следующая ⇒
НАДН гликолиза могут доставляться в митохондрии Молекулы НАДН, образованные в шестой реакции гликолиза, в зависимости от наличия кислорода имеют, как минимум, два пути своего дальнейшего превращения: · либо остаться в цитозоле и вступить в одиннадцатую реакцию гликолиза (анаэробные условия), · либо проникнуть в митохондрию и окислиться в дыхательной цепи (аэробные условия). Челночные системы Так как сама молекула НАДН через мембрану не проходит, то существуют специальные системы, принимающие атомы водорода от НАДН в цитоплазме и отдающие их в матриксе митохондрий. Эти системы получили название челночные системы. Определены две основные челночные системы – глицеролфосфатная и малат-аспартатная. На основании наличия алкогольдегидрогеназы во многих тканях, в том числе и в нервной, дискутируется вопрос о существовании этанол-ацетальдегидной челночной системы, однако однозначных экспериментальных доказательств пока не получено. Глицеролфосфатный челночный механизм Ключевыми ферментами глицеролфосфатного челнока являются изоферменты глицерол-3-фосфат-дегидрогеназы – цитоплазматический и митохондриальный. Они отличаются своими коферментами: у цитоплазматической формы – НАД, у митохондриальной – ФАД. В цитозоле метаболиты гликолиза – диоксиацетонфосфат и НАДН образуют глицерол-3-фосфат, поступающий в матрикс митохондрий. Там он окисляется с образованием ФАДН2. Далее ФАДН2направляется в дыхательную цепь и используется для получения энергии. Таким образом, в результате действий челнока цитозольный НАДН+H+ как бы " превращается" в митохондриальный ФАДН2. Этот челнок активен в печени и белых скелетных мышцах и необходим для получения энергии из глюкозы при работе клетки. Однако, если в клетке имеется избыток энергии (состояние покоя, после еды), то часть глицерол-3 фосфата в митохондрию не пойдет, а будет использоваться в цитозоле гепатоцитов для синтеза фосфолипидов и триацилглицеролов. Малат-аспартатный челночный механизм Ключевыми ферментами этого челнока являются изоферменты малатдегидрогеназы – цитоплазматический и митохондриальный. Он является распространенным по всем тканям. Этот механизм более сложен: постоянно идущие в цитоплазме при участии фермента аспартатаминотрансферазы (АСТ) реакции трансаминирования аспарагиновой кислоты с α -кетоглутаратом поставляют оксалоацетат, который под действием цитозольного пула малатдегидрогеназы и за счет " гликолитического" НАДН восстанавливается до яблочной кислоты (малата). Последняя антипортом с α -кетоглутаратом проникает в митохондрии и, являясь метаболитом ЦТК, окисляется в оксалоацетат с образованием НАДН. Так как мембрана митохондрий непроницаема для оксалоацетата, то он при помощи аспартатаминотрансферазы трансаминируется до аспарагиновой кислоты, которая в обмен на глутамат выходит в цитозоль.
Таким образом, атомы водорода от цитозольного НАДН перемещаются в состав митохондриального НАДН. Обе картинки — с того же сайта, написано вроде ничётак. Из других сайтов: https://www.xumuk.ru/biochem/214.html, там во многом повторяется инфа, только в первом абзаце сравнительно новые слова:
|