Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Заканчиваем таблицу… взрывом






 

При взрыве сверхновой в нашу Солнечную систему были вброшены все существующие в природе элементы, а благодаря перемешиванию пород на молодых незатвердевших планетах эти элементы равномерно распределились в скальных грунтах. Но эти процессы не позволяют ответить на все вопросы, связанные с распределением элементов на Земле. С тех пор как взорвалась сверхновая, многие элементы уже исчезли с лица Земли, так как их ядра оказались слишком непрочными, чтобы уцелеть в природе. Такая нестабильность поражала ученых, в периодической системе оказалось несколько необъяснимых пробелов, которые химики менделеевской эпохи не могли заполнить, несмотря на все поиски. В конце концов, эти клетки таблицы все же удалось заполнить, но сначала пришлось развить целые новые научные дисциплины. Освоив эти науки, мы научились создавать элементы самостоятельно и лишь потом осознали, что из-за непрочности некоторые элементы таят в себе страшную угрозу. Процессы синтеза и расщепления атомов оказались связаны гораздо теснее, чем кто-либо мог предположить.

Начало этой истории было положено в Англии, в Университете Манчестера накануне Первой мировой войны. В те годы в Манчестере работала целая плеяда замечательных ученых, в частности Эрнест Резерфорд, руководивший исследовательской лабораторией. Одним из его наиболее перспективных студентов был Генри Мозли. Мозли был сыном натуралиста, восхищавшегося Чарльзом Дарвином, но выбрал себе профессию физика, а не биолога. Мозли относился к лабораторной работе так ответственно, как относятся к бдению у постели умирающего. Он задерживался в лаборатории по пятнадцать часов, как будто вечно не успевал завершить всех начатых опытов. Молодой человек даже не успевал поесть, перебиваясь фруктовым салатом и сыром. Как и многие одаренные личности, Мозли был одиночкой, строгим к себе и щепетильным человеком. Он открыто возмущался «вонючей неопрятностью» приезжих, наводнявших Манчестер.

Но за талант Мозли можно было простить многие недостатки. Молодой исследователь увлекся изучением элементов, расщепляя их электронными лучами, хотя Резерфорд и считал эту работу напрасной тратой времени. Мозли заручился поддержкой другого физика, внука Дарвина, и в 1913 году начал систематически «препарировать» все известные элементы, даже золото. Сегодня мы знаем, что, когда пучок электронов попадает в атом, он вышибает из атома часть его собственных электронов, оставляя брешь. Электроны притягиваются к ядру атома, поскольку электроны и протоны, входящие в состав ядра, имеют противоположные электрические заряды. Выбивание электронов из атома – довольно жесткая операция. Поскольку природа не терпит пустоты, на освободившееся место устремляются другие электроны, чтобы заполнить эту дыру. При этом они сталкиваются и испускают рентгеновские лучи, обладающие высокой энергией. Примечательно, что Мозли нашел математическое соотношение между длиной волны рентгеновских лучей, количеством протонов в ядре элемента и атомным номером элемента (его местом в периодической системе).

С тех пор как в 1869 году Менделеев опубликовал свою знаменитую таблицу, в нее был внесен ряд изменений. Сначала Менделеев расположил таблицу продольно, пока кто-то не убедил его, что целесообразно повернуть всю схему на 90 градусов. В течение следующих сорока лет химики продолжали возиться с таблицей, добавляя столбцы и тасуя элементы. Тем временем в периодической системе все явственнее просматривались аномалии, заставлявшие ученых задуматься, на самом ли деле они верно понимают эту таблицу. Большинство элементов в таблице следуют друг за другом в порядке увеличения атомной массы. Согласно данному критерию, никель должен стоять перед кобальтом. Но, чтобы расположить элементы правильно – то есть чтобы и под кобальтом, и под никелем оказались похожие на них элементы, – химикам пришлось поменять два металла местами. Никто не знал, почему приходится сделать такое отступление от правила, а ведь таких пар было несколько! Чтобы обойти проблему, ученые изобрели атомный номер, дополнявший атомную массу, но это лишь подчеркивало, что истинного значения атомного номера никто не понимает.

Мозли было всего двадцать пять лет, когда он смог разгадать эту загадку. Он взглянул на химический вопрос с физической точки зрения. Важно понимать, что в то время лишь немногие ученые верили в существование атомного ядра. Резерфорд сформулировал гипотезу о существовании компактного ядра, обладающего большим положительным зарядом, но гипотеза оставалась непроверенной до 1913 года и слишком умозрительной для ученых, чтобы ее признать. Первые доказательства в ее пользу удалось получить только Мозли. Нильс Бор, другой ученик Резерфорда, вспоминал: «Вы знаете, работы Резерфорда [по атомному ядру] не считались серьезными. Сегодня мы не можем в это поверить, но они вовсе не рассматривались серьезно. Никто и нигде про них не упоминал. И только после работ Мозли все изменилось». Дело в том, что Мозли догадался связать место элемента в периодической системе с его физическими характеристиками, приравняв к атомному номеру положительный заряд ядра. И он подтвердил это равенство при помощи эксперимента, который было очень легко воспроизвести. Таким образом, было доказано, что отклонения от расположения элементов в порядке возрастания атомной массы не являются случайными, а связаны со сложным строением атомного ядра. Заковыристые случаи, например пара «кобальт – никель», вдруг прояснились. Дело в том, что у более легкого атома никеля больше протонов, чем у кобальта. Положительный заряд никеля больше, чем заряд кобальта, поэтому кобальт стоит в таблице раньше. Если Менделеев и другие открыли «химический кубик Рубика», то Мозли научился его складывать, и больше не приходилось выдумывать какие-то объяснения.

Более того, подобно спектроскопу, электронная пушка Мозли помогла упорядочить таблицу, рассортировав запутанные радиоактивные изотопы и развенчав многочисленные ошибочные утверждения об открытии «новых элементов». Мозли также смог заполнить четыре из остававшихся пробелов в периодической системе – расставил по местам элементы 43, 61, 72 и 75. Элементы тяжелее золота в те годы были слишком дорогостоящими, чтобы достать их необходимое количество для экспериментов. Если бы Мозли смог приобрести такие образцы, то, возможно, открыл бы еще элементы 85, 87 и 91.

К сожалению, в начале XX века химики и физики не слишком доверяли друг другу. Некоторые знаменитые химики сомневались, что Мозли действительно удалось совершить настолько великое открытие. Француз Жорж Урбэн бросил смелому молодому человеку вызов, предложив ему разобрать смесь из множества редких и похожих друг на друга элементов (напоминавшую породы из Иттербю). Урбэн посвятил двадцать лет изучению химии редкоземельных металлов, и у него ушло несколько месяцев кропотливой работы, чтобы определить, какие четыре элемента содержатся в этом образце. Так Урбэн рассчитывал пристыдить или даже унизить Мозли. После первой встречи Мозли вновь увиделся с Урбэном через час, предъявив ему полный и совершенно точный список[51]. Редкоземельные металлы, приводившие в такое замешательство Менделеева, теперь можно было сортировать без малейшего труда.

Но эту работу пришлось выполнить не Мозли, а другим людям. Хотя он и стал пионером ядерной физики, боги наказали его, как Прометея, принесшего огонь людям и осветившего тьму для будущих поколений. С началом Первой мировой войны Мозли ушел на фронт (хотя армейские чиновники советовали ему этого не делать) и принял участие в тяжелых боях при Галлиполи в 1915 году. Как-то раз турецкая пехота двинулась на британские позиции фалангой глубиной в восемь рядов. Начался рукопашный бой, в котором в ход шли ножи, камни и зубы. Где-то в этой кровавой бойне пал и двадцатисемилетний Мозли. Вся бесплодность этой войны известна нам из стихов английских поэтов, также не вернувшихся с фронта. Но один из коллег-ученых заявил, что гибель одного только Генри Мозли обеспечила этой «последней из всех войн» славу «одного из самых гнусных и непоправимых преступлений в истории человечества»[52].

Самая лучшая посмертная почесть, которую могли ученые воздать Мозли, заключалась в поиске тех недостающих элементов, на которые он указал. Действительно, Мозли так вдохновил искателей элементов (наконец-то у энтузиастов было четкое понимание того, что надо делать), что такая «химическая охота» стала даже слишком популярной. Вскоре начались жаркие споры о том, кому же именно удалось впервые выделить гафний, протактиний и технеций. Другие группы исследователей смогли в конце 1930-х годов заполнить пустые клетки 85 и 87 – соответствующие элементы были искусственно синтезированы в лабораториях. К 1940 году оставался неоткрытым лишь один природный элемент – номер 61.

Странно, но лишь немногие исследователи во всем мире пытались его найти. Одна из групп, которой руководил итальянский физик Эмилио Сегре, пыталась получить искусственный образец и, возможно, даже достигла успеха в 1942 году. Но изолировать элемент не удавалось, и после нескольких неудачных попыток работа была заброшена. Прошло еще целых семь лет. И вот в Филадельфии состоялась научная конференция, на которой выступили трое ученых из американской национальной лаборатории Оук-Ридж в штате Теннеси. Они заявили, что смогли получить шестьдесят первый элемент, просеяв отработанную урановую руду. После долгих сотен лет развития химии последний пробел в периодической системе наконец был заполнен.

Объявление не произвело никакого фурора. Трое коллег уточнили, что сделали это открытие двумя годами ранее, но не имели возможности о нем сообщить, так как были слишком заняты исследованиями урана – своей основной работой. В прессе эта новость также освещалась очень сдержанно. В газете New York Times заголовок о последнем недостающем элементе соседствовал со статьей о каком-то сомнительном геологическом методе, который якобы мог обеспечить многовековую бесперебойную добычу нефти. Журнал Time вскользь упомянул этот элемент в обзоре, посвященном филадельфийской конференции, и снисходительно охарактеризовал его как «практически бесполезный»[53]. Затем ученые рассказали, что планировали назвать открытое ими вещество «прометий». Элементы, открытые ранее в XX веке, получали гордые или как минимум очевидные названия. Прометий же был назван в честь Прометея, древнегреческого титана. Согласно известному мифу, Прометей похитил у богов огонь и подарил его человечеству, за что понес жестокое наказание – боги приковали его к скале и ежедневно присылали огромного орла клевать и терзать печень титана. Неудивительно, что это название навевает суровые, мрачные, в чем-то даже преступные ассоциации.

Итак, что же произошло в период между экспериментами Мозли и открытием шестьдесят первого элемента? Почему охота на элементы настолько измельчала: смерть Мозли многими признавалась невосполнимой утратой, а открытие прометия удостоилось лишь беглого упоминания на газетной полосе? Действительно, прометий оказался практически бесполезен. Но ученые более, чем кто-либо из людей, приветствуют такие непрактичные открытия. Последний шаг в расшифровке основной части периодической системы стал эпохальным событием, кульминацией миллионов человеко-часов работы. Дело не в том, что люди просто устали искать новые элементы – ведь этот поиск продолжали вести на протяжении большей части холодной войны ученые-соперники из СССР и США. Но за прошедшие годы изменилась как сущность, так и масштабы ядерной физики. Люди начали понимать, как это работает, и среднестатистический элемент прометий уже не воодушевлял их так, как тяжелые элементы – плутоний и уран. А уж что говорить о самом знаменитом «порождении» этих элементов – атомной бомбе.

Утром одного дня 1939 года молодой физик, учившийся в Калифорнийском университете в городе Беркли, решил постричься и уселся в пневматическое парикмахерское кресло в студенческом клубе. Неизвестно, о чем беседовали в тот день парикмахер со студентом – возможно, об этой сволочи Гитлере или о том, выиграют ли «Янки» Мировую бейсбольную серию в четвертый раз подряд. Так или иначе, этот студент – молодой Луис Альварес, которому много позже предстояло выдвинуть теорию о вымирании динозавров, – о чем-то болтал с парикмахером, а тем временем пролистывал номер San Francisco Chronicle. В рубрике новостей телеграфного агентства он прочитал об экспериментах, которые Отто Ган проводил в Германии. Эксперименты заключались в исследовании ядерного распада – точнее, расщепления атома урана. Кто-то из друзей вспоминал, что Альварес вдруг отстранил руку парикмахера с машинкой, сорвал с себя покрывало и ринулся в лабораторию, где немедленно настроил счетчик Гейгера и поспешил за образцами облученного урана. Совершенно не стесняясь своей недостриженной шевелюры, Альварес стал громко звать всех, кто был поблизости, чтобы продемонстрировать им открытое Ганом явление.

Анекдот об Альваресе забавен, но он к тому же отлично характеризует то состояние, в котором находилась к концу 1930-х ядерная физика. Ученые все лучше понимали, как ведут себя атомные ядра, пусть прогресс и был очень медленным. И вдруг в результате одного открытия произошел прорыв. Мозли сформулировал строгое обоснование для науки, изучавшей атомы и ядра, и в 20-е годы XX века в этой области трудилось множество очень талантливых людей. Тем не менее научный поиск оказался сложнее, чем можно было предположить. Частично в этом был виноват сам Мозли. Его работа показала, что отдельные изотопы, например свинец-204 и свинец-206, обладают одинаковым положительным зарядом, но разной атомной массой. В мире, знавшем лишь о существовании протона и электрона, ученым оставалось лишь выдвигать нескладные гипотезы. Например, предполагалось, что положительные протоны могут «проглатывать» отрицательные электроны, как Пакман[54]. Кроме того, для понимания взаимодействий субатомных частиц ученым пришлось изобрести новый математический аппарат – квантовую механику. Потребовались многие годы, чтобы понять, как законы квантовой механики объясняют строение даже простейших изолированных атомов водорода.

Тем временем физики активно разрабатывали и смежное научное поле, изучая явления радиоактивности, заключающегося в распаде атомов. Любой «традиционный» атом мог отдавать или красть электроны. Но самые дальновидные ученые – например, Эрнест Резерфорд и Мария Кюри – также осознали, что ядра некоторых редких элементов могут изменяться, распыляя своеобразную «атомную шрапнель». Одна из особых заслуг Резерфорда заключается в том, что он смог классифицировать эту «шрапнель» и выявить три ее основных типа, названных по первым буквам греческого алфавита. Это были альфа-частицы, бета-частицы и гамма-лучи. Гамма-лучи – это самый простой и наиболее смертоносный продукт ядерного распада. Они возникают, когда атом испускает концентрированные рентгеновские лучи. Сегодня гамма-излучение – одна из известнейших научных страшилок. Первые два типа радиоактивности связаны с превращением одних элементов в другие – в 1920-е годы этот процесс очень волновал научные умы. Но каждый элемент проявляет свойство радиоактивности особым образом, так что глубинная природа альфа– и бета-распада озадачивала физиков, которые все менее уверенно представляли себе и строение изотопов. «Пакмановская[55]» модель казалась все более несостоятельной, а некоторые отчаянные физики даже полагали, что единственный способ как-то разобраться с непостижимым множеством изотопов – отказаться от периодической системы.

Массовый коллективный шлепок по лбу в духе «Ах, как же я сам не догадался!» произошел в 1932 году, когда Джеймс Чедвик, один из учеников Резерфорда, открыл нейтрон – элементарную частицу, не имеющую заряда, но имеющую массу. Этот феномен, рассмотренный в контексте идей Мозли об атомной массе, мгновенно позволил понять, как же построены атомы (по крайней мере, изолированные). Из-за разного количества нейтронов в ядрах изотопы свинца-204 и 206 относятся к одному химическому элементу и располагаются в одной клетке периодической системы. Ведь положительный заряд у них одинаков, а атомная масса разная. Внезапно прояснилась и природа радиоактивности. Бета-распад оказался превращением нейтронов в протоны и наоборот. Именно из-за изменения количества протонов один элемент в процессе бета-распада превращается в другой. Альфа-распад тоже сопровождается превращением элементов, при этом в ядре происходят наиболее серьезные изменения: при каждом акте альфа-распада атом теряет сразу два нейтрона и два протона.

В течение следующих нескольких лет нейтрон уже стал чем-то бо́ льшим, чем теоретический инструмент. Во-первых, он оказался изумительным средством для зондирования недр атома, так как при «выстреле» нейтроном по атому эта частица не отталкивалась, в отличие от электрически заряженных «снарядов». Кроме того, нейтрон помог ученым описать новый тип радиоактивности. Элементы, особенно самые легкие, «пытаются» поддерживать в ядре стабильное соотношение между протонами и нейтронами – примерно 1 к 1. Как только в атоме накопится слишком много нейтронов, он самопроизвольно распадается, испуская при этом энергию и лишние нейтроны. Если эти нейтроны попадают в соседние атомы, то эти атомы также становятся нестабильными и испускают все больше нейтронов. Возникает своеобразный каскад, называемый цепной реакцией. Физик Лео Сцилард придумал концепцию цепной реакции примерно в 1933 году, стоя однажды утром в Лондоне на перекрестке со светофором. Сцилард запатентовал эту идею в 1934 году. Первые попытки осуществить цепную реакцию с легкими элементами (правда, неудачные) он предпринимал уже в 1936 году.

Обратите внимание на все эти даты. В те самые годы, когда в научных кругах формировалась стройная картина нейтронных, протонных и электронных взаимодействий, старый мировой политический порядок стремительно распадался. В тот день, когда Альварес прочитал в парикмахерской о распаде урана, Европа уже была обречена.

Период аристократической «охоты за элементами» клонился к закату. Теперь ученые обладали новой моделью внутреннего строения атома и понимали, что единичные еще не открытые элементы периодической системы ускользают от них потому, что по природе своей крайне нестабильны. Даже если молодая Земля изобиловала ими, эти атомы уже давным-давно распались. Действительно, такая точка зрения удобно объясняла пробелы в периодической таблице, но оказалось, что традиционный поиск элементов был заброшен не зря. Исследуя нестабильные атомы, ученые вскоре познакомились с феноменами ядерного распада и нейтронных цепных реакций. И как только стало понятно, что атомы можно расщеплять – а также была осознана научная и политическая подоплека этого факта, – поиск новых элементов «для коллекции» сразу превратился в любительское хобби. Этим он напоминал старомодную биологию начала XIX века, сводившуюся к охоте и набиванию чучел, которая несравнима с современной молекулярной биологией. Именно поэтому в 1939 году ученые, осознававшие близость новой мировой войны и то, что в ней могут быть применены атомные бомбы, отложили поиски прометия и завершили их лишь через десять лет.

Как сильно ни были ученые заинтригованы возможностью создания ядерных бомб, требовалось проделать еще массу работы, отделявшей теорию от практики. Сегодня об этом уже не вспоминают, но военные эксперты считали создание атомных бомб, мягко говоря, маловероятным, по крайней мере в обозримом будущем. Как обычно, военные лидеры охотно брали на службу ученых, а ученые исправно усугубляли жестокости войны, изобретая новые технологии – например, улучшая сорта стали. Но Вторая мировая война не завершилась бы двумя ядерными грибами, если бы американское правительство просто требовало немедленно создать более мощное и скоростное оружие. Напротив, была проявлена политическая воля, и миллиарды долларов были вложены в область, ранее считавшуюся чисто академической и оторванной от жизни: науку о субатомных частицах. Но даже при этом задача запуска контролируемой ядерной реакции и расщепления ядер настолько опережала состояние науки тех лет, что для успешной реализации Манхэттенского проекта пришлось разработать совершенно новую исследовательскую стратегию. Она называлась методом Монте-Карло и полностью перевернула представление людей о том, что значит «творить науку».

Как упоминалось выше, сначала квантовая механика применялась лишь для описания изолированных атомов. К 1940 году было известно, что атом, поглотивший нейтрон, становится нестабильным. Он может взорваться и, возможно, испустить еще больше нейтронов. Проследить путь отдельно взятого нейтрона было легко – не сложнее, чем путь отскочившего бильярдного шара. Но для запуска цепной реакции требовалось скоординировать миллиарды миллиардов нейтронов – все они двигались бы при этом с разной скоростью в разных направлениях. Из-за этого теоретический аппарат, рассчитанный на описание отдельных атомов, рушился как карточный домик. К тому же уран и плутоний были дорогими и опасными веществами, поэтому об аккуратных детальных экспериментах не могло быть и речи.

Но перед учеными, работавшими в Манхэттенском проекте, стояла задача точно определить, сколько именно плутония и урана требуется для создания бомбы. Если бы ядерного топлива было слишком мало, бомба «истлела» бы, не взорвавшись. Слишком много – и бомба взорвалась бы мгновенно, что продлило бы войну еще на многие месяцы, так как очистка урана и плутония была невероятно сложным процессом (в случае с плутонием процесс был двухэтапным: сначала синтезировать, а потом очистить). Поэтому, из чисто практических соображений, некоторые прагматичные ученые решили одновременно отказаться и от традиционной теории, и от традиционной практики, проторив вместо этого совершенно новый, третий путь.

Сначала была выбрана случайная скорость нейтрона, отскакивающего от атомов в образце плутония или урана. Для нейтрона было выбрано случайное направление, а также еще ряд случайных значений для других параметров – доступный объем плутония, вероятность того, что нейтрон «выскочит» из образца, а не попадет в один из атомов, даже геометрия и контуры плутониевой кладки. Важно отметить, что выбор конкретных чисел означал следующее: ученые сознательно отказывались от универсальности вычислений, так как результаты описывали бы поведение лишь немногих нейтронов в одной из многих возможных моделей. Ученые-теоретики принципиально не желают прорабатывать неуниверсальные случаи, но на этот раз у них просто не было другого выбора.

В то же время в проекте были задействованы целые залы, где работали молодые женщины с карандашами (многие из них были женами ученых, призванными на помощь, так как работать в Лос-Аламосе[56]было невероятно тягостно).

Они получали лист, исписанный случайными цифрами, и начинали считать (иногда совершенно не понимая, что делают), как нейтрон будет сталкиваться с атомами плутония при данных значениях; будет ли он поглощен; сколько новых нейтронов выделится при этом и выделится ли вообще; сколько нейтронов выделится на следующем этапе реакции, и так далее. Каждая из сотен женщин решала узкую математическую задачу, по конвейерному принципу, а ученые обобщали результаты. Историк Джордж Дайсон описал этот процесс как изготовление бомб «математически, нейтрон за нейтроном, наносекунда за наносекундой… [методом] статистического приближения множества случайных событий… за которым следовал ряд репрезентативных хронометрируемых проб, позволявших ответить на не решаемый иным способом вопрос: превратится ли ядерная реакция при данной конфигурации в термоядерную»[57].

Иногда в такой теоретической системе могла возникнуть ядерная реакция, и это считалось успехом. После завершения всех расчетов женщины принимались за работу с новыми наборами цифр. Потом снова. И снова. Конечно, клепальщица Рози[58]стала символом тяжелого заводского труда в годы войны, но Манхэттенский проект также не был бы реализован без труда сотен женщин, корпевших над испещренными цифрами листками. Таких женщин-вычислителей называли неологизмом «компьютер».

Но почему же потребовалось организовать такой необычный процесс? В принципе, ученые приравняли каждый расчет к эксперименту и собирали информацию об урановых и плутониевых бомбах, полученную лишь «на кончике пера». Пришлось отказаться от скрупулезного и взаимно корректирующего синтеза теории и лабораторной работы и вооружиться методологией, которую один историк нелицеприятно охарактеризовал как «искаженную… сымитированную реальность, заимствовавшую подходы как из теории, так и из практики, объединившую их и применившую полученный сплав, чтобы застолбить на методологической карте несуществующую землю, которая одновременно находится и везде, и нигде»[59].

Разумеется, такие вычисления оказывались полезны лишь настолько, насколько точны были исходные уравнения, но здесь физикам по-настоящему повезло. Частицы на квантовом уровне действительно подчиняются статистическим законам, а квантовая механика, при всей ее кажущейся нелогичности, является самой точной научной теорией, когда-либо разработанной человечеством. Кроме того, в рамках Манхэттенского проекта было выполнено огромное количество вычислений, само по себе вселявшее в ученых уверенность. Эта уверенность блестяще оправдалась после успешного испытания «Тринити», проведенного в штате Нью-Мексико в середине 1945 года. Точная и безошибочная детонация урановой бомбы над Хиросимой, за которой через несколько дней последовал взрыв плутониевой бомбы над Нагасаки, полностью подтвердила точность такого нетрадиционного научного метода, основанного на многочисленных разрозненных расчетах.

После того как отшельническое братство ученых, работавших над Манхэттенским проектом, завершилось, ученые разъехались по домам, чтобы осмыслить, что же они совершили (некоторые при этом испытывали гордость, другие – нет). Многие постарались побыстрее забыть о времени, проведенном в счетных залах. Но некоторые оказались поглощены тем, что удалось изучить в рамках проекта. Таков был беженец из Польши Станислав Улам. Работая в Нью-Мексико, он коротал свободное время за карточными играми. Однажды в 1946 году он раскладывал пасьянс и заинтересовался тем, какова вероятность выигрыша для любой случайной раздачи. Больше карточных игр Улама привлекали только отвлеченные вычисления, поэтому он принялся исписывать целые страницы вероятностными уравнениями. Вскоре проблема усложнилась настолько, что трезвомыслящий Улам от нее отступился. Он решил, что лучше сыграть тысячу игр и составить процентную таблицу, показывающую вероятность выигрыша в каждом конкретном случае. Достаточно просто.

В мозгу у большинства людей, даже ученых, эта задача не породила бы верной ассоциации, но Улам в середине прошлого века, века индивидуализма, осознал, что в своих карточных расчетах он руководствуется теми же принципами, которые применялись в Лос-Аламосе при «вычислительном конструировании» атомных бомб. Конечно, связь была абстрактной, но порядок и расклад карт очень напоминали ввод случайных чисел, а раздача соответствовала одному вычислению. Вскоре Улам стал обсуждать этот метод со своим другом Джоном фон Нейманом, который также любил вычисления и тоже был ветераном Манхэттенского проекта. Улам и фон Нейман осознали, как велик может быть потенциал этого метода, если сделать его универсальным и применять в других ситуациях, где приходится работать с множеством случайных переменных. При таком подходе можно было не пытаться учесть все возможные осложнения, даже эффект бабочки, а просто очерчивать проблему, выбирать для ввода случайные данные, а потом действовать методом проб и ошибок. Такой подход не является экспериментальным, поэтому результаты его неточны. Но если провести достаточное количество вычислений, то результат можно найти с высокой точностью.

По счастливой случайности Улам и фон Нейман были знакомы с американскими инженерами, разрабатывавшими первые электронные компьютеры – например, ЭНИАК, установленный в Филадельфии. Женщины-вычислители, занятые в Манхэттенском проекте, на определенном этапе стали использовать при расчетах механическую систему, работавшую с перфокартами, но неутомимый ЭНИАК казался гораздо более многообещающим инструментом для масштабных вычислений, задуманных Уламом и фон Нейманом. Теория вероятностей зародилась в аристократических казино. Тем не менее не вполне ясно, почему предложенный двумя учеными метод получил такое название. Улам любил похвастаться, что назвал его в честь дядюшки, который часто одалживал деньги, чтобы предаваться азартным играм на «широко известном генераторе случайных чисел (от нуля до тридцати шести), установленном в одном средиземноморском княжестве».

Как бы то ни было, метод Монте-Карло быстро прижился в науке. Он позволял экономить, обходясь без дорогостоящих экспериментов. Именно необходимость создания достаточно точных симуляторов метода Монте-Карло была той движущей силой, благодаря которой стали активно развиваться компьютеры. Вычислительные машины становились все быстрее и эффективнее. В то же время пришествие эры дешевых вычислений означало, что эксперименты в стиле метода Монте-Карло, различные имитации и модели могли все шире применяться в химии, астрономии и физике, не говоря уже об инженерии и анализе рынков. В настоящее время (по прошествии всего двух поколений) метод Монте-Карло настолько доминирует в некоторых научных областях, что молодые ученые даже не подозревают, насколько их работа не похожа на традиционную теоретическую или экспериментальную науку. Простая уловка, временная мера – использование атомов урана и плутония в качестве абака, на котором вычисляются ядерные реакции, – превратилась в незаменимый инструмент научного познания. Метод Монте-Карло не просто завоевал науку; он укрепился, усвоился и переплелся с другими методами.

Но в 1949 году такая трансформация еще не свершилась. На первом этапе существования метод Монте-Карло помогал разрабатывать новые поколения ядерного оружия. Фон Нейман, Улам и другие ученые такого же склада приходили в огромные залы, напоминавшие университетские аудитории, где стояли компьютеры. Там они загадочно спрашивали, можно ли запустить несколько программ, и занимались этим с полудня до утра. В эти мертвые часы они создавали «суперснаряды» – многоступенчатые машины в тысячи раз мощнее обычных атомных бомб. В суперснарядах плутониевые и урановые заряды применялись для запуска ядерного синтеза в жидком сверхтяжелом водороде – именно благодаря таким реакциям горят звезды. Это сложный процесс, который мог навсегда остаться лишь в виде описания на страницах секретных военных отчетов. О нем бы не узнали даже операторы ракетных пусковых шахт, если бы не вычислительные машины. Историк Джордж Дайсон красиво охарактеризовал технологическую историю того десятилетия фразой: «компьютеры привели к бомбам, а бомбы – к компьютерам».

Проделав массу работы, чтобы правильно спроектировать супербомбу, ученые достигли успеха в 1952 году – атолл Эниветок в Тихом океане был стерт с лица земли при испытании водородной бомбы. Этот взрыв вновь продемонстрировал безжалостную безупречность метода Монте-Карло. Тем не менее инженеры-атомщики уже разрабатывали устройства пострашнее водородных бомб. Атомная бомба может погубить вас двумя способами. Маньяк, желающий просто погубить десятки тысяч людей и сровнять с землей целый город, может удовлетвориться обычной «одноступенчатой» атомной бомбой. Ее проще сконструировать, а пылающий ядерный гриб удовлетворит стремление маньяка к театральности массового убийства. Не менее зрелищными будут и непосредственные эффекты взрыва – спонтанные торнадо и темные силуэты жертв, которые останутся на стенах. Но достаточно терпеливый маньяк, который хочет совершить непоправимое зло, отравить все колодцы и просолить почву, сделав ее бесплодной, подорвет грязную атомную бомбу, начиненную кобальтом-60.

Основным поражающим фактором обычной ядерной бомбы является высокая температура. Грязная атомная бомба наиболее опасна из-за сильного гамма-излучения. Гамма-лучи возникают в результате стихийных ядерных реакций. Под действием такого излучения человек не просто сильно обгорает – гамма-лучи проникают в костный мозг и повреждают хромосомы белых кровяных клеток. Эти клетки либо погибают сразу, либо перерождаются в раковые, либо просто вырастают до огромных размеров. В результате они деформируются и не могут бороться с инфекциями. При всех ядерных взрывах выделяется определенное количество радиации, но в грязной атомной бомбе именно радиация является основным поражающим фактором.

Но даже эндемичная форма лейкоза не кажется «достаточно убийственной», если судить по некоторым бомбам. Лео Сцилард, еще один беженец из Европы, участвовавший в Манхэттенском проекте, был тем самым физиком, который, к собственному сожалению, еще в 1933 году сформулировал идею о самоподдерживающейся цепной ядерной реакции. Сцилард – мудрый и трезвомыслящий человек – в 1950 году рассчитал, что достаточно распылить по три грамма кобальта-60 на каждую квадратную милю земной поверхности, чтобы спровоцировать сильнейшее гамма-излучение, которое уничтожит весь человеческий род. Это был бы ядерный вариант того смертельного облака, которое когда-то погубило динозавров. Модель Сциларда представляла собой многоступенчатую боеголовку, обложенную слоем кобальта-59. Ядерная реакция распада, протекающая в плутонии, запускает реакцию ядерного синтеза в водороде. Разумеется, сразу после начала ядерного синтеза испарится и кобальтовая обкладка, и все остальное. Но перед этим на атомном уровне произойдет кое-что еще. Атомы кобальта впитают в себя нейтроны, выделяющиеся при реакциях синтеза и распада, и наступит стадия, называемая «подсаливанием». В результате подсаливания стабильный кобальт-59 превращается в кобальт-60, осаждающийся, как пепел.

Очень многие элементы способны испускать гамма-лучи, но кобальт в этом отношении особенный. Обычные атомные бомбы можно держать в специальных шахтах, поскольку продукты распада их топлива очень быстро расходуют запас гамма-лучей, оставаясь сравнительно безвредными. В дни атомных взрывов 1945 года в Хиросиме и Нагасаки все же можно было выжить. Другие элементы поглощают лишние нейтроны, подобно алкоголику, постоянно жаждущему догнаться стопочкой. Элемент «заболевает» на некоторое время, но не на века. В таком случае, после взрыва радиоактивный фон уже не достигнет запредельных значений.

Кобальтовая бомба дьявольски оказывается в середине между крайностями. Это один из редких случаев, когда золотая середина является наиболее пагубным вариантом. Атомы кобальта-60 осаждаются в грунте, как крошечные фугасы. Достаточно много таких «мин» сработает сразу, так что останется только спасаться бегством, но и через пять лет еще добрая половина кобальта будет готова «рвануть». Такой постоянный поток гамма-шрапнели означает, что взрыв кобальтовой бомбы нельзя «переждать» или вынести. Зараженная территория не очистится на протяжении целой человеческой жизни. Именно поэтому кобальтовые бомбы вряд ли могут применяться в военных целях, так как армия завоевателей просто не сможет оккупировать район бомбардировки. Но вряд ли это остановит настоящего маньяка, желающего оставить за собой выжженную землю.

Следует отметить в защиту Сциларда: он надеялся, что его кобальтовая бомба – первая настоящая «адская машина» – никогда не будет создана, и (насколько известно) ни одна страна не пыталась сконструировать такое оружие. Сцилард изложил эту идею, чтобы продемонстрировать безумность самой идеи ядерных войн, но общество ухватилось за нее. Например, в фильме Стэнли Кубрика «Доктор Стрейнджлав, или Как я перестал бояться и полюбил бомбу» Советский Союз обладает кобальтовыми бомбами. До выкладок Сциларда ядерное оружие казалось пусть и грозным, но не апокалипсическим. Сцилард надеялся, что после его скромного предупреждения люди одумаются и прекратят клепать боеголовки. Нисколько. Вскоре после того, как название «прометий» стало официальным, у Советского Союза появилась своя атомная бомба. Правительства США и СССР вскоре одобрили более чем удручающую доктрину «взаимного гарантированного уничтожения». По-английски она обозначается аббревиатурой «MAD», это слово переводится «безумный». Суть этой доктрины сводится к тому, что в ядерной войне, независимо от ее исхода, поражение потерпят обе стороны. Так или иначе, эта доктрина, идиотская с этической точки зрения, действительно предотвратила использование ядерных боеголовок в качестве тактического вооружения. Но международная напряженность стала такой сильной, что началась настоящая холодная война. Это противостояние настолько пронизало наше общество, что отразилось даже на совершенно пацифистской таблице Менделеева.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.013 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал