Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Вероятностный характер микропроцессов






Вероятностные свойства микрочастиц. Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волново-го дуализма, ограниченность применения классической механики к микрообъектам, диктуемая принципами дополнительности и неопределенности, а также противоречие некоторых экспериментов, классической теории привели к созданию квантовой механики для описания микрочастиц с учетом их волновых свойств. Ее развитие начиналось в 1900 г., когда М. Планк впервые предложил квантовую гипотезу, и связано с работами физиков Э. Шредингера, В. Гейзенберга, П. Дирака и др.

Отличительная особенность квантовой теории заключается в вероятностном подходе к описанию микрочастиц, который можно пояснить на примере их дифракции. Дифракционная картина характеризуется неоднородным распределением потоков микрочастиц, рассеянных или отраженных по различным направлениям: в одних направлениях наблюдается их большее число, чем в других. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что им соответствует наибольшая интенсивность волн де Бройля. Вместе с тем интенсивность таких волн больше там, где большее число частиц, т.е. их интенсивность в данной точке пространства определяет число частиц. Следовательно, дифракционная картина для микрочастиц — это проявление статистических (вероятностных) свойств: частицы попадают в те места, где интенсивность волн де Бройля наибольшая.

Для квантово-механического описания микрообъектов используется волновая функция, впервые введенная в 1926 г. Э. Шредингером. Ее физическую интерпретацию дал немецкий физик М. Борн (1882—1970):

квадрат волновой функции определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме.

Статистическое толкование волн де Бройля и принцип неопределенности Гейзенберга привели к выводу: основным уравнением в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть такое уравнение, из которого вытекали бы наблюдаемые на опыте волновые свойства частиц. Такое уравнение с учетом волновой функции сформулировал в 1926 г. Э. Шредингер. Уравнение Шредингера, как и многие уравнения физики, не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом полученных с его помощью результатов.

Симметрия волновой функции и принцип Паули. Неразличимость тождественных частиц обусловливает симметрию волновой функции. Если при перестановке частиц местами волновая функция не меняет знака, то она называется симметричной, если меняет — антисимметрич-


ной. Изменение знака волновой функции не означает изменения состояния частиц, поскольку физический смысл имеет лишь квадрат модуля волновой функции. В квантовой механике принято: характер симметрии волновой функции не меняется со временем. Свойство симметрии или антисимметрии — характерный признак определенного класса микрочастиц.

Симметрия или антисимметрия волновых частиц определяется спином частиц — их собственным моментом импульса. В зависимости от характера симметрии все элементарные частицы и построенные из них системы (атомы, молекулы) делятся на два класса. Частицы с полуцелым спином (например, электроны, протоны, нейтроны) описываются антисимметричными волновыми функциями и подчиняются статистике Ферми—Дирака; такие частицы называются фермионами. Частицы с нулевым или целочисленным спином (например, пимезоны, фотоны), описываемые симметричными волновыми функциями и статистикой Бозе—Эйнштейна, относятся к классу бозонов. Сложные частицы (например, атомное ядро), состоящие из нечетного числа фермионов, являются фермионами (суммарный спин — полуцелый), а из четного — бозонами (суммарный спин — целый).

Зависимость характера симметрии волновых функций системы тождественных частиц от спина частиц теоретически обоснована швейцарским физиком В. Паули (1900—1958). Обобщая результаты экспериментов, он сформулировал принцип, согласно которому

системы фермионов встречаются в природе только в состояниях, описываемых антисимметричными волновыми функциями

Это квантово-механическая формулировка принципа Паули. Из него следует более простая формулировка, введенная в 1925 г. (еще до создания квантовой механики):

в системе одинаковых фермионов любые два из них не могут находиться в одном и том же состоянии.

Следует отметить, что число однотипных бозонов, находящихся в одном и том же состоянии, не ограничивается.

Состояние электрона в атоме однозначно определяется набором четырех квантовых чисел: главного, орбитального, магнитного и спинового. Распределение электронов в атоме подчиняется принципу Паули. Для атома он формулируется так:

в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел.

Совокупность электронов в многоэлектронном атоме, имеющих одно и то же главное квантовое число, называется электронной оболочкой.


Принцип Паули, определяющий правило заполнения электронных оболочек атомов, позволяет объяснить Периодическую систему элементов Д.И. Менделеева. Расположив химические элементы по мере возрастания порядковых номеров, Д.И. Менделеев обосновал периодичность изменения химических свойств элементов. Наряду с известными в то время 64 химическими элементами некоторые клетки таблицы оказались незаполненными, так как соответствующие им элементы (например, Ga, Se, Ge) тогда еще не были известны. Д.И. Менделеев не только правильно расположил известные элементы, но и предсказал существование новых, еще не открытых элементов и их основные свойства.

Поскольку химические и некоторые физические свойства элементов объясняются внешними (валентными) электронами в атомах, периодичность свойств химических элементов непосредственно зависит от периодичности электронов в атомах. При объяснении последовательного расположения элементов в таблице удобно считать, что каждый атом последующего элемента образуется из предыдущего прибавлением одного протона и соответственно прибавлением одного электрона в электронной оболочке атома. Открытая Д.И. Менделеевым периодичность химических свойств элементов объясняется повторяемостью в структуре внешних оболочек атомов родственных элементов. Периодическая система Д.И. Менделеева — фундаментальный закон природы.

Принципы причинности и соответствия. На основании анализа принципа неопределенности некоторые философы пришли к выводу о неприменимости принципа причинности к микропроцессам. В классической механике, согласно принципу причинности, по известному состоянию системы в некоторый момент времени (полностью определенным значениям координат и импульсов всех частиц системы) и силам, приложенным к ней, можно описать ее состояние в любой последующий момент. В классическом представлении принцип причинности означает:

состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причина, а ее состояние в последующий момент — следствие.

Совсем другая ситуация с микрообъектами: они в соответствии с принципом неопределенности не могут характеризоваться одновременно определенными координатой и импульсом, откуда следует вывод: в начальный момент времени состояние системы точно не определено. Если же начальное состояние системы не определено, то нельзя предсказать ее последующие состояния, а это означает, что нарушается принцип причинности. Однако в реальном случае никакого нарушения нет, поскольку в квантовой механике понятие состояния микрообъекта имеет совершен-152


но другой смысл, чем в классической механике. В квантовой механике состояние микрообъекта полностью определяется волновой функцией в данный и последующие моменты времени. Таким образом,

состояние системы микрочастиц, определяемое в квантовой механике, однозначно вытекает из предшествующего состояния, как того требует принцип причинности.

В становлении квантово-механических представлений важную роль сыграл выдвинутый Н. Бором в 1923 г. принцип соответствия:

всякая новая более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя, указывая границы ее применения, причем в определенных предельных случаях новая теория переходит в старую.

Так, формулы кинематики и динамики релятивистской механики переходят при скоростях, много меньших скорости света в вакууме, в формулы механики Ньютона. Волновыми свойствами обладают все тела, однако для макроскопических тел ими можно пренебречь, т.е. для них применима классическая механика.

Практические аспекты квантово-механической концепции. Квантово-механическая концепция, описывающая, казалось бы, загадочный и далекий от обычных представлений микромир, все активнее вторгается в практические сферы человеческой деятельности. Появляется все больше приборов, основанных на квантово-механических принципах — от квантовых генераторов (лазеров, мазеров и др.) до многообразных микроэлектронных устройств. Видимо, пришел черед и вычислительной техники — предполагается, что компьютеры, построенные на квантовых вычислительных элементах, совершат переворот в разработке современных мощных вычислительных средств. Вполне возможно, что через какое-то время квантовый компьютер станет инструментом, столь же привычным, как сегодня обычный компьютер.

4.4. СОВРЕМЕННЫЕ АТОМНЫЕ СИСТЕМЫ

К современным объектам изучения атомной физики относятся не только атомы с их сложным строением, но и различные атомные системы с необычной структурой, определяющей их уникальные химические и физические свойства. К таким атомным системам относятся эксимерные молекулы, кластеры, фуллерены, углеродные нанотрубки и др.

Эксимерные молекулы существуют только в возбужденном состоянии. Известно, что атомы благородных газов, как правило, не образуют химических соединений. Исключение составляют фториды криптона и ксенона, а также некоторые их производные, синтезированные в послед-


ние десятилетия. Такое свойство благородных газов объясняется тем, что их атомы не имеют электрона в незаполненных оболочках, который мог бы составить пару электрону другого атома с противоположным спином. Наличие подобной пары является необходимым условием образования ковалентной химической связи, обеспечивающей стабильность химического соединения. В возбужденном состоянии атома благородного газа электрон занимает одну из незаполненных оболочек и может составить пару электрону другого атома, что дает возможность образования молекулы с атомом благородного газа. Такие молекулы называются эксимерными.

Эксимерная молекула, потенциальная энергия которой превышает энергию основного состояния, не может существовать долго. Она распадается в течение нескольких наносекунд, излучая световой квант. Несмотря на непродолжительное время жизни, эксимерная молекула имеет все признаки химического соединения. Она обладает колебательными и вращательными степенями свободы и способна вступать в химические реакции. Главная особенность эксимерных молекул состоит в том, что они представляют собой готовую активную среду для создания эксимерных лазеров — мощных квантовых генераторов ультрафиолетового излучения.

Кластеры занимают промежуточное положение между молекулярным и конденсированным состоянием вещества. Возникает вопрос: как много атомов необходимо собрать вместе, чтобы полученное образование обладало свойствами конденсированного вещества? Этот вопрос привлек внимание исследователей к изучению объектов, названных кластерами, состоящих из относительно небольшого количества атомов или молекул. Кластеры получаются при охлаждении газа в результате его расширения в сверхзвуковом сопле. Возможен и другой способ их получения: при взаимодействии сфокусированного источника энергии (лазерного луча, либо пучка заряженных частиц высокой энергии) с веществом, находящимся в конденсированном состоянии, образуется своеобразная среда, содержащая кластеры различных размеров.

Кластеры находят практическое применение в современной нанотех-нологии. При осаждении потока кластеров на подложку можно сформировать элемент электронной схемы, размеры которого составляют десятки нанометров, и получить, например, полупроводниковую зону чрезвычайно малых размеров.

Фуллерены — новая разновидность многоатомных молекул углерода, открытая в результате экспериментального исследования структур кластеров. Молекула фуллеренов состоит из большого числа (от 32 до 90) атомов углерода. Структура фуллерена представляет собой замкнутую поверхность сферы или сфероида, состоящую из правильных шести- и 154


пятиугольников с атомами углерода в их вершинах (рис. 4.2). Число пятиугольников всегда равно 12, а число шестиугольников может быть различным. Наиболее устойчивой оказалась молекула С60 с двадцатью шестиугольниками. За открытие фуллеренов английскому ученому Гарольду Крото и двум его американским коллегам — Роберту Керлу и Ричарду Смэллу — присуждена Нобелевская премия по химии 1996 г. Это открытие, как иногда случается в науке, не было результатом целенаправленного поиска. К нему привели многолетние работы по исследованию кластеров и расшифровке спектральных линий поглощения межзвездного вещества.

В результате реакции присоединения водорода по ненасыщенным связям углерода при высоких давлениях и температурах можно создать модификацию фуллеренов с исключительно высокой удельной емкостью по водороду, что представляет практический интерес при разработке эффективных аккумуляторов водорода. Фуллерены обладают высокой химической активностью и способны образовывать множество новых химических соединений с необычными свойствами. Химические соединения фуллеренов, в состав которых входят шестичленные кольца углерода с одинарными и двойными связями, образуют трехмерный аналог ароматических веществ. Кристаллы фуллеренов — полупроводники с фотопроводимостью в видимой области спектра излучения. Легированные атомами щелочных металлов, фуллерены обладают сверхпроводимостью при температуре 18—40 К. Использование фуллеренов в качестве присадки к смазочному маслу существенно (до 100 раз) снижает коэффици-


ент трения металлических поверхностей и соответственно повышает срок службы деталей. Возможно, фуллерены найдут применение в медицине и фармакологии.

Углеродные нанотрубки представляют собой протяженные молекулярные структуры углерода в виде полого цилиндра (рис. 4.3). Технология их формирования такая же, как и для фуллеренов: они образуются при термическом распылении графитового анода в электрической дуге в атмосфере гелия. Длина однослойных или многослойных молекулярных нанотрубок углерода достигает десятков микрометров, что на несколько порядков превышает их диаметр, составляющий от одного до нескольких нанометров. Нанотрубки обычно заканчиваются полусферой.

Углеродные нанотрубки обладают необычными свойствами. Так, нанотрубки с открытыми концами проявляют капиллярный эффект — способность втягивать в себя расплавленные металлы и другие жидкие вещества. С их помощью можно сформировать р-п- переходнанометровых размеров. Благодаря чрезвычайно малому поперечному размеру нанотрубки, с ее помощью можно усилить электрическое поле. Электрические свойства нанотрубок в сочетании с высокой прочностью открывают возможность их использования в качестве материала для зонда сканирующего микроскопа, что позволяет существенно повысить его разрешающую способность.

Таким образом, рассмотренные атомные системы могут составить основу для синтеза новых перспективных материалов — материалов XXI в. с уникальными физическими и химическими свойствами.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал