Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Полимеризационные полимеры (класс А)
В зависимости от химической природы активных центров различают радикальную и ионную полимеризацию. При радикальной полимеризации активными центрами являются свободные радикалы, образующиеся при распаде перекисей и азосоединений, от воздейст-вия на мономер дополнительной энергии (нагревание, световые и Другие облучения и др.). При ионной (каталитической) полимеризации активными центрами служат ионы, образующиеся при распаде катализаторов (AlCb, BF3, TiCU), которыми являются щелочные и Щелочноземельные металлы, кислоты и металлоорганические соединил. В промышленности используют три способа полимеризации: °локе, в растворе и в эмульсии (суспензии). Процесс полимеризации включает, в основном, три элементарных реакции: образование активного центра, рост цепи и обрыв цепи. Эмульсионная или суспензионная полимеризация является наиболее распространенной в промышленности для получения многих полимеров. В качестве дисперсионной среды при полимеризации эмульсии или суспензии используют воду с эмульгатором, который улучшает эмульгирование мономера в воде. В зависимости от способа приготовления эмульсии мономера в воде и условий проведения полимеризации различают эмульсионную (латексную) и суспензионную (капельную) полимеризацию. Блочная полимеризация может осуществляться без растворителей Риодическим или непрерывными способами. В первом случае получают блок полимера, имеющий форму сосуда (емкости), в кот ром происходила реакция полимеризации; во втором — осущест ляют непрерывный выход расплава полимера из реактора. Это-способ характеризуется полимеризацией мономера в «чистом» видПолимеризация в растборе производится «лаковым» способом ц в жидкости, не растворяющей полимер. Полученный раствор поли-мера в растворителе («лак») непосредственно используют в про. мышленности или полимер выделяют путем осаждения или испаре. ния растворителя. При полимеризации по второму способу применяют жидкость, растворяющую только мономер. По мере образования полимер выделяется из раствора в виде осадка или может быть отфильтрован. Полимеризация в растворе позволяет легко отводить теплоту реакции и регулировать степень полимеризации. Поскольку при капельной полимеризации вводят инициатор реакции, не растворимый в воде, но растворимый в мономере, то полимер образуется как бы в каждой отдельной «капле». В качестве эмульгаторов обычно применяют мыла: олеаты, лау-раты щелочных металлов, натриевые соли ароматических сульфо-кислот и др. Часто эмульсионную полимеризацию проводят в присутствии водорастворимых индикаторов (перекись водорода и др.). К важнейшим полимеризационным полимерам (термопластам) следует отнести полиэтилен, полипропилен, полиизобутилен, поли-винилхлорид, полистирол, полиакрилаты и др. В процессе полимеризации могут возникать полимеры, имеющие неодинаковую конфигурацию отдельных звеньев по всей длине цепи. Такие полимеры называют атактическими (неупорядоченными). Однако при полимеризации в присутствии катализаторов практически всегда образуются полимеры, имеющие одинаковую конфигурацию последовательных звеньев. Их именуют как упорядоченные — изотактические полимеры. Они обладают повышенным качеством. В настоящее время промышленность использует следующие методы полимеризации этилена: полимеризация при высоком давлении (до 300 МПа) в присутствии кислорода; при среднем давлении (3, 5—7, 0 МПа) — в углеродистых растворителях с окйсно-металлическими катализаторами, при атмосферном или очень малом давлении (0, 5—3 МПа) с металлорганическими катализаторами. При получении полиэтилена низкого давления не требуется сложного компрессорного хозяйства. При низком давлении полиэтилен получают полимеризацией этилена в растворе (бензине) непрерывным методом при давлении 0, 15—0, 5 МПа и температуре до 80°С в присутствии катализатора Циглера—Натта (комплексные метал-лорганические соединения). Производство полиэтилена при среднем давлении основано на полимеризации этилена в растворе. Этот метод производства полиэтилена в нашей стране широкого распространения не нашел. Полиэтилен низкого давления имеет значительные теплостойкость, плотность и жесткость. Основным отличием полиэтилена низкого давления является его кристалличность, в результате чего — меньшие эластичность, прозрачность и большая твердость. Физико-механические свойства полиэтилена в значительной мере зависят от степени полимеризации, т. е. от молекулярной массы готового продукта. Молекулярная масса полиэтилена находится в пределах: низкого давления 10 000—50 000 и высокого Давления 80 000—400 00 Предел прочности при разрыве в зависимости от молекулярной массы полиэтилена колеблется от 18 до 25, 5 МПа плотность 0, 92—0, 95 г/см3, температура плавления 110—125°С, модуль упругости 150—800 МПа. Полиэтилен применяют для производства труб, пленок, гидроизоляционных материалов, тары и предметов сантехнического оборудования. Порошкообразный полиэтилен успешно используют для антикоррозионной защиты металла. Для производства строительных материалов и изделий выпускают следующие марки полиэтилена: 20606-012 (низкого давления), 11802-070 (высокого давления). Полиэтилен (высокомолекулярный) хорошо поддается механической обработке, стоек против агрессивного действия воды, соляных растворов, щелочей, кислот (кроме азотной). При нормальной температуре он нерастворим в органических растворителях и только при нагревании поддается растворению в ароматических углеводородах. Полипропилен является перспективным полимером для производства труб, пленок и других изделий, используемых в строительстве при изготовлении бассейнов, пластиковых лестниц и других конструкций. Из полистирола изготовляют гидроизоляционные пленки, облицовочные плиты, водопроводные трубы, теплоизоляционные материалы, различную тару, изделия для электропромышленности. Пе-нополистирол является наполнителем многослойных панелей, хорошим теплоизолятором. К важнейшим техническим свойствам поливинилхлорида следует отнести его относительно высокую ударную вязкость, прочность при разрыве (до 60, 0 МПа), устойчивость к воздействию щелочных и кислых растворов, а также высокие диэлектрические свойства. Его истинная плотность 1, 3—1, 4 г/см3, водопоглощение за 24 ч 0, 4—0, 5%, теплопроводность 0, 16 Вт/(мК), твердость по Бринеллю до 16. На основе поливинилхлорида изготовляют синтетические лино-леумы, плитки для пола, линкруст, трубы, газонаполненные пластмассы, строительные профили для окон (оконные переплеты) и двери, облицовочные панели типа «Сайдинг» — методом экструзии. Пластифицированный поливинилхлорид широко используют для получения гидроизоляционных и упаковочных пленок; хлорированный поливинилхлорид с содержанием 60—80% хлора (перхлорвинил) применяют для получения стойких лаков и фасадных красок. Недостаток поливинилхлорида — сравнительно низкая температура размягчения (70°С). При нагревании этого полимера до 140—150°С начинается его разложение с выделением хлористого водорода, каталитически ускоряющего процесс разложения. Полиизобутилен имеет ряд положительных свойств. Он достаточно легок (плотность 0, 91 г/см3), водостоек (водопоглощение 0, 05%) и стоек к действию агрессивных сред. Предел прочности по-лиизобутилена при разрыве 6, 0—7, 0 МПа. Полиизобутилен в виде листов и пленок применяют в качестве хорошего гидроизоляционного материала. В отличие от каучука не способен к вулканизации (химической «сшивке» молекул). Индено-кумароновые полимеры — продукты полимеризации соединений — индено-кумарона и их гомологов, содержащихся в сыром бензоле и фенольной фракции каменноугольной смолы. Их выпускают в виде кусков или чешуек плотностью 1, 05—1, 2 г/см Эти полимеры применяют для производства плиток для пола, изготовления лаков и красок для внутренней отделки. Полиметилметакрилат используют для остекления зданий специального назначения, витрин магазинов, веранд, оранжерей, больниц, для изготовления светильников, фонарей производственных цехов и т. п. Его можно получать окрашенным в различные цвета, прозрачным и непрозрачным. В строительстве синтетические каучуки применяют для производства различных клеев и мастик (битумно-кумароно-каучуковые, кумароно-каучуковые и др.). Их используют также для модификации различных полимеров с целью повышения их упругих свойств. Синтетические каучуки находят широкое применение для изготовления герметиков и герметизации швов между панелями при крупнопанельном домостроении; при изготовлении пластобетонов и растворов; для получения различного вида резин.
|