![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Состояние и перспективы разработки генеральной схемы размещения ветроэлектрических станций в России до 2030 года
В данной статье предложен проект схемы перспективного (до 2030 года) размещения и использования в России ветроэлектрических станций (ВЭС). Основу предлагаемой схемы составляют ВЭС, размещенные в энергетически дефицитных районах России, где расчетная себестоимость вырабатываемой ими электроэнергии (ЭлЭн) ниже себестоимости вновь строящихся электростанций на газе (ГазЭС). Авторы: Николаев В.Г., директор Автономной некоммерческой организации «Научно-информационный центр «АТМОГРАФ» (НИЦ «АТМОГРАФ»), Ганага С.В., Научно-информационный центр «АТМОГРАФ» Суммарная мощность таких ВЭС, технологически реализуемых до 2020 и 2030 годов, составляет до 7 и 30 ГВт с годовой выработкой до 17, 5 и 85 млрд кВт.ч, что в большой степени способствует выполнению Распоряжения Правительства РФ 1-р от 08.01.2009 о доведении производства ЭлЭн в РФ к 2020 году на возобновляемых источниках энергии до 4, 5% (без больших ГЭС). Аргументация реальности и высокой эффективности промышленного производства ЭлЭн на ВЭС России основана на следующих положениях. 1. В качестве базовых для промышленной выработки ЭлЭн в РФ с учетом мирового опыта выбраны наиболее энергетически и экономически эффективные ВЭС мощности 30–50 МВт на основе современных ВЭУ мощности 2–3 МВт. 2. ВЭС размещаются в районах, где себестоимость вырабатываемой ими ЭлЭн ниже себестоимости ЭлЭн вновь строящихся тепловых электростанций (на газе и угле), – основы электроэнергетики страны в настоящее время и, согласно Энергетической стратегии России до 2030 года, в многолетней перспективе. 3. Ресурсным условием выполнения пункта 2 является размещение ВЭС в местах, где ВЭР обеспечивают работу ВЭС с КИУМ > 30% [1]. Себестоимость ЭлЭн ВЭС определена с учетом прогноза капитальных и эксплуатационных затрат на современных ВЭС и результатов исследований авторами возможных многолетних сценариев макроэкономических факторов (инфляции и стоимости ЭлЭн и топлива в России и странах ЕС). Для определения экономически эффективных ВЭС авторами в [2] предложен способ, основанный на расчете возможных объемов выработки ЭлЭн ВЭС, отвечающей двум критериям. Согласно первому, прогнозная себестоимость электроэнергии ВЭС должна быть на 18–20% ниже таковой у наиболее экономичных в рассматриваемом районе альтернативных вновь строящихся электростанций. Согласно второму, целесообразная суммарная установленная мощность вводимых ВЭС, отвечающих первому условию, ограничена 20% от ожидаемой к 2030 году суммарной электрогенерирующей мощности всех электростанций субъекта РФ с учетом технологических ограничений по вводу ВЭС, определенных в [1, 2]. При этом в силу хозяйственно-финансовой разобщенности региональных энергетических компаний и в целях минимизации потерь электроэнергии ВЭС при ее транспортировке предполагается, что основная часть выработки ЭлЭн ВЭС, расположенных на территории субъекта РФ, потребляется им же и соседними субъектами с учетом прогноза потребления ЭлЭн в каждом субъекте РФ согласно Энергетической стратегии РФ 2030 [3] с использованием описанной в [2] экономической модели капитальных и эксплуатационных затрат на ВЭС и альтернативных им электростанциях. Количественным критерием достаточности экономической эффективности ВЭС принят уровень себестоимости их ЭлЭн – 5, 5 euro/кВт.ч, исходя из минимальной себестоимости ЭлЭн вновь строящихся в России ГазЭС, по оценкам авторов, более 6, 5 euro/кВт.ч. Последнее значение складывается из капитальной (1, 3–1, 45 euro-ц/кВт.ч), топливной (3, 6–4, 4 euro-ц/кВт.ч) и эксплуатационной (1, 6–1, 8 euro-ц/кВт.ч) составляющих. Экономическая эффективность ВЭС рассчитана по развитой в [2] модели капитальных затрат на ВЭС для двух возможных вариантов. При размещении ВЭС вдали (более 30 км) от существующих повышающих трансформаторных подстанций (ТП) для каждой крупной ВЭС предусматривается строительство ТП вблизи (не далее 3 км) существующих высоковольтных (> 110 кВ) линий электропередачи (ЛЭП). При удаленности ВЭС от ближайшей ТП менее 25 км до нее сооружается ЛЭП на 35–110 кВ [5]. Максимальная удаленность от автотрасс экономически эффективных ВЭС, согласно [5], составляет в зависимости от их суммарной мощности, типа и стоимости базовых ВЭУ от 6 до 12 км. Таблица 2. Возможные объемы использования ВЭС в Камчатском крае до 2020 года *) ТЭС, ДЭС, ГеоЭС и ГЭС, входящие в объединенную энергосистему Необходимыми условиями достижения максимума энергетической эффективности и минимума затрат при строительстве и эксплуатации ВЭС являются благоприятный рельеф, и подстилающая поверхность и транспортная доступность, что, как правило, выполняется на посевных площадях в зонах централизованного электроснабжения, являющихся, по мнению автора, подходящим полигоном для размещения ВЭС. Данные о посевных площадях России взяты из официальных источников [4]. С учетом ограничений повсеместного размещения ВЭУ автор полагает возможным размещение ВЭС на 50% посевных площадей 1990 года, удовлетворяющих условию КИУМ> 30%, площадь которых составляет около 110 тыс. км2, или около 0, 65% от территории страны. Распределение по территории России, стран СНГ и Балтии параметра КИУМ для ВЭУ V 90 компании VESTAS – мирового лидера по производству ВЭУ, полученное по методике работы [1], дано на рисунке 1. Оцененный таким образом потенциал экономически эффективных ВЭС РФ составляет свыше 1100 млрд кВт.ч, превышает потребление ЭлЭн в стране внастоящее время и, согласно [3], 70% ожидаемого потребления в 2030 году. Рис. 1. Распределение параметра КИУМ ВЭУ V 80 с высотой башни 100 метров по территории РФ Масштабы использования ВЭС в РФ с учетом установленных экономических преимуществ над традиционными источниками энергии и имеющихся в стране ветровых ресурсов ограничены лишь потребностями в электроэнергии и технологическими и производственными ограничениями. К последним относятся ограничения темпов ввода ВЭС, связанные с возможностями импорта оборудования, организацией собственного производства ВЭУ и их ремонтной инфраструктуры, подготовкой кадров и пр. [2]. Исходя из мировых темпов развития и имеющегося в России кадрового, технологического и производственного уровня авторам представляются целесообразными рубежи развития и темпы их достижения, соответствующие средним темпам развития ветроэнергетики в Испании, Индии, Франции. При этом к 2020 и 2030 годам суммарная мощность ВЭС с себестоимостью ЭлЭн не выше 5–5, 5 euro-ц/кВт.ч в РФ может составить до 6, 5–7 ГВт в 2020 году и до 30–35 ГВт в 2030 году. С учетом потребностей страны в наращивании генерирующих мощностей, ветроэнергетических ресурсов и установленной высокой эффективности современных ВЭС, а также при принятии правовой базы, эффективно регулирующей взаимоотношения в электроэнергетике между генерирующими и сетевыми компаниями внутри субъекта и между субъектами РФ, суммарная выработка ВЭС к 2030 году может достигать 80–85 млрд кВт.ч (до 5, 5% потребления ЭлЭн в России в 2030 году). Перспективные районы и возможные объемы использования ВЭС до 2020 года в России в целом и в отдельном субъекте РФ (на примере Камчатского края) даны в таблице 1 и 2. Полученные результаты предлагаются авторами в качестве основы для разработки генеральной схемы размещения ВЭС в России до 2020 года.
|