![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Классификация ПИ по источникам их возникновения
1.1. Методическая ПИ – составляющая систематической ПИ, обусловленная несоответствием реальной методики выполнения измере-ний идеальным теоретическим положениям, на котором основано измерение. Основные составляющие методической погрешности. Некорректная идеализация реального объекта измерений - несоответствие объекта измерения идеализированной модели, положенной в основу процесса измерения. Приближения и упрощения, используемые в ходе измерительного преобразования - несоответствия процесса измерительного преобразования его идеальной модели. Д опущения, принятые при измерении и обработке результатов измерений. Появление методической погрешности первой группы (погрешности из-за некорректной идеализации реального объекта измерений) можно рассмотреть на примере измерения диаметра номинально цилиндрической детали станковым средством измерений (измерительной головкой на стойке). В частности, измерение детали с седлообразной поверхностью приведет к появлению методической погрешности, примерно равной отклонению образующей от прямолинейности (рис. 2). Приведенный пример показывает, что некорректная идеализация формы объекта при линейных измерениях может привести к возникновению методических погрешностей, которые могут существенно превышать инструментальную составляющую. При измерении плотности номинально компактного и однородного твердого тела неидеальность объекта может быть связана с наличием необнаруженных полостей или инородных включений Перечень видов неидеальности объектов значителен. Например, значения параметров твердости и шероховатости поверхностей деталей, химический состав материала детали, определяемые на конкретном участке, могут отличаться от параметров на других участках той же поверхности. Температура в объеме жидкости или газа практически всегда различается по слоям (температурные градиенты), скорость жидкости или газа в потоке в разных сечениях неодинакова (градиенты скорости) и т.д. Рассмотрим примеры погрешностей второй группы. При косвенных измерениях диаметров больших деталей часто рулеткой измеряют длину окружности, а затем рассчитывают диаметр. Здесь теоретическая погрешность будет присутствовать в любом случае из-за округления трансцендентного числа p. По этой же причине образуются методические погрешности при измерении площади круглых сечений, объема тел с такими сечениями и плотности их материала.
При измерении азимута по магнитному компасу методическая погрешность возникает из-за несовпадения магнитных и географических полюсов Земли. Измерение параметров электрической цепи специально подключае-мым прибором приводит к некоторому изменению структуры цепи из-за подключения дополнительной нагрузки. Результаты измерений электри-ческих параметров объектов могут искажаться также из-за наличия присоединительных проводов, меняющихся переходных сопротивлений в местах присоединения чувствительных элементов (щупов или клемм) измерительных приборов. Измерение массы взвешиванием на рычажных весах с гирями в воздушной среде, как правило, осуществляют без учета воздействия на меры и объект выталкивающей архимедовой силы, которой бы не было при взвешивании в вакууме. Измерение температуры воды в стакане жидкостным термометром, погружаемым в налитую горячую воду, фактически приводит к измерению температуры " объединения вода + термометр", которая отличается от исходной из-за потерь энергии на выравнивание температур тел " композиции". Измерение линейных размеров всегда базируется на теоретическом допущении идеально гладких границ твердого тела, что противоречит наличию микрогеометрии и субмикрогеометрии поверхности контроли-руемой детали. В большинстве случаев погрешности из-за принятых допущений пренебрежимо малы, но в случае прецизионных измерений ихприходится оценивать, учитывать и компенсировать. 1.2. Инструментальная погрешность измерения – составляющая ПИ, обусловленная погрешностью применяемых СИ, вспомогательных технических средств и устройств. К инструментальным погрешностям относят погрешности всех применяемых в данных измерениях технических средств и вспомога-тельных устройств, влияющих на результат измерений, включая погреш-ности прибора, мер для его настройки, дополнительных сопротивлений, шунтов, установочных узлов или соединительных проводов и т.д. 1.3. Субъективная погрешность измерения – составляющая ПИ, обусловленная индивидуальными особенностями оператора. Субъективные погрешности включают погрешности отсчитывания и погрешности манипулирования средствами измерений и измеряемым объектом. При измерениях часто приходится оперировать устройствами совмещения, настройки и корректировки нуля, арретирования, базиро-вания СИ и измеряемого объекта, устройствами присоединения СИ к объекту для снятия сигнала измерительной информации (чувствительными элементами). Такие манипуляции часто приводят к ПИ, особенно существенным у операторов с недостаточно высокой квалификацией. Погрешности отсчитывания возникают при использовании аналого-вых средств измерений с устройством выдачи измерительной информации типа " шкала-указатель". При положении указателя между отметками шкалы отсчитывание осуществляется либо с округлением до ближайшего деления, либо с интерполированием доли деления на глаз. Погрешность округления результата до целого деления составляет не более половины цены деления отсчетного устройства, а при интерполировании доли деления погрешность отсчитывания еще меньше и составляет не более 1/10 части цены интерполируемого деления (у опытных операторов при удачной эргономике отсчетного устройства – не более 1/20 части деления). В случае, если плоскости шкалы и указателя не совпадают, возможно возникновение погрешности отсчитывания из-за параллакса при направлении взгляда оператора под углом к указателю. Для уменьшения погрешностей от параллакса используют методы сближения указателя со шкалой (скошенные кромки нониуса штангенциркуля и барабана микрометра, расположенный в плоскости шкалы световой указатель), а также искусственные приемы получения нормального угла зрения (специальные наглазники и налобники в оптических приборах, зеркальная полоска под шкалой электроизмерительных приборов и др.).
|