Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Кoмандoаппараты
Командоаппаратом называется устройство, предназначенное для переключений в цепях управления силовых электрических аппаратов (например, контакторов). Командоаппараты могут иметь ручной привод (кнопки, ключи управления, командоконтроллеры) или приводиться в действие контролируемым механизмом (например, путевые и концевые выключатели). Кнoпки управления используются для схем пуска, остановки и реверса электродвигателей путем замыкания и размыкания обмоток контакторов, которые коммутируют главную цепь, а также для управления самыми различными схемами автоматики. Один из вариантов кнопки управления показан на рис. 15.5. При переменном токе электрическая дуга надежно гаснет при напряжении до 500 В и токе 3 A благодаря двум размыкающим контактам для одной коммутируемой цепи. При постоянном токе и напряжении 440 B отключаемый ток не превышает 0, 15 А. При использовании кнопки для включения электромагнитов переменного тока её контакты в замкнутом положении должны надежно пропускать пусковые токи обмоток, которые могут достигать 60 А.
Рис. 15.4. Схема соединений кулачкового контроллера для пуска асинхронного двигателя с фазным ротором
Рис. 15.5. Кнoпка yпpaвления
Схемы управления целесообразно проектировать так, чтобы отключение цепи производилось не кнопкой, а другим, более мощным аппаратом, имеющим вспомогательные контакты. Когда необходимо производить переключение нескольких цепей по определенной программе с большой частотой включений, применяются командоконтроллеры. На рис. 15.6 показан нерегулируемый командоконтроллер постоянного тока, по принципу устройства аналогичный кулачковому контроллеру. Рис. 15.6. Нерегулируемый кулачковый командоконроллер
С помощью мостикового контакта 1 в отключаемой цепи создаются два разрыва, что облегчает гашение дуги. Кулачковый привод, большое расстояние контактов от центра вращения 0 рычага 2, большой междуконтактный промежуток позволяют получить высокую скорость расхождения контактов и увеличить ток отключения почти в 4 раза по сравнению с током отключения кнопочного элемента. Моменты замыкания и размыкания контактов зависят от профиля кулачка 3. Положение вала фиксируется с помощью рычажного фиксатора 4. С помощью командоконтроллера производится управление силовыми контакторами, которыми, в свою очередь, коммутируются силовые цепи. При точной регулировке момента срабатывания применяются регулируемые кулачковые командоконтроллеры (рис. 15.7).
Рис. 15.7. Регулируемый кулачковый командоконтроллер На валу 1 укрепляется диск 3 из изоляционного материала. По окружности диска расположены отверстия для крепления кулачков 2 и 7. При нажиме кулачка 7 на ролик 9 контактный рычаг 8 поворачивается относительно центра 0 против часовой стрелки и неподвижные контакты 4 и 5 замыкаются мостиком 6. Контактный рычаг фиксируется во включенном положении защелкой 12, которая удерживается пружиной 13 в пазу нижней части рычага 8 (рис. 15.7, б). Одновременно сжимается возвратная пружина 10. При дальнейшем вращении диска кулачёк 2 набегает на ролик 11 защелки 12 и выбивает последнюю. Под действием пружины 10 происходит размыкание контактов (рис. 15.7, г). Достоинством механизма является независимость скорости размыкания контактов от частоты вращения вала. Момент замыкания и размыкания контактов может регулироваться в широких пределах с большой точностью. При грубой регулировке кулачек устанавливается в различные положения на диске. Для точной регулировки предусмотрена овальная форма отверстия для крепления кулачка, что позволяет смещать его на ±10°30’ относительно центра отверстия. В регулируемом командоконтроллере можно установить на каждом диске до трех включающих и трех выключающих кулачков. Число коммутируемых цепей может меняться от 4 до 12. Вращение вала осуществляется специальным исполнительным двигателем, что обеспечивает дистанционное управление командоконтроллером. Для схем управления электроприводом, электрических аппаратов и разнообразных устройств автоматики широко применяются универсальные переключатели (УП), устройство которых такое же, как и командоконтроллеров, но с меньшим числом коммутируемых цепей и меньшими габаритами. Переключение контактов УП осуществляется вручную оператором. Рукоятка УП может иметь несколько фиксированных положений или возвращаться в исходное положение. Путевой (позиционный) выключатель (переключатель) предназначен для размыкания слаботочных сигнальных цепей в зависимости от пространственного положения (позиции) рабочего органа управляемого электропривода. Частным случаем путевых являются конечные (концевые) выключатели, обеспечивающие коммутацию сигнальных цепей только в крайних положениях хода рабочего органа. Контактные путевые выключатели можно подразделить на кнопочные и рычажные. В кнопочном путевом выключателе контролируемый рабочий орган воздействует на шток кнопочного элемента (рис. 15.8). Размыкание и замыкание контактов происходит со скоростью перемещения контролируемого органа. При скорости штока 0, 4 м/мин необходимо применять выключатели с повышенным быстродействием. Если требуется остановить рабочий орган привода или при его приближение выполнить соответствующие переключения с высокой точностью , применяются путевые (конечные) микропереключатели. На рис. 15.8 показан микропереключатель с одним переключающим контактом. Неподвижные контакты 1 и 2 укреплены в пластмассовом корпусе 7. Подвижный контакт 3 укреплен на конце специальной пружины, состоящей из плоской 4 и фигурной 5 частей. В изображенном на рис. 15.8 положении пружина создает давление на контакт 2. При нажатии рабочего органа на головку 6 происходит деформация пружины и переброс контакта 3 в нижнее положение за время 0, 01 – 0, 02 с, что обеспечивает надёжное отключение цепи. Ход головки 6 составляет десятые доли миллиметра. Микровыключатели ВМК – ВЗГ отключают ток до 2, 5 А при постоянном напряжении 220В и переменном 380 В. Рис. 15.8. Путевой микропереключатель
При больших ходах рабочего органа и больших токах применяются рычажные путевые переключатели, принцип действия которых показан на рис. 15.9. Контролируемый рабочий орган привода воздействует на ролик 1, укрепленный на конце рычага 2. На другом конце рычага находится подпружиненный ролик 3, который может перемещаться вдоль оси рычага. В указанном положении замкнуты контакты 7 и 8. Положение контактов зафиксировано защелкой 6. При воздействии на ролик 1 рычаг 2 поворачивается против часовой стрелки. Ролик 3 поворачивает тарелку 4 и связанные с ней контакты 8 и 9. При этом контакты 7 и 8 размыкаются, а 9 и 10 замыкаются. Возврат в исходное положение после прекращения воздействия на ролик 1 производится пружиной 5. Рис. 15.9. Рычажный путевой переключатель
Контактные путевые переключатели обеспечивают точность срабатывания ± (0, 02-0, 05) мм при износостойкости до (5-10) переключений и благодаря простоте конструкции находят широкое применение. Для повышения надежности и долговечности в контактных путевых выключателях часто применяются герметичные магнитоуправляемые контакты – герконы, на базе которых создана серия выключателей ВСГ. Принцип действия герконовых выключателей продемонстрирован на рис. 15.10. В выключателях серии ВСГ с контролируемым рабочим органом жестко связана пластина из магнитомягкой стали. Пластина входит в узкую щель, с одной стороны которой расположен геркон, а с другой – постоянные магниты (рис. 15.10). При вхождении в щель пластины через неё замыкается поток постоянного магнита. Магнитный поток в герконе исчезает, им происходит его переключение. Выключатель имеет замыкающий и размыкающий контакты, коммутирующие ток 0, 01-1 А при напряжении постоянного тока до 110 В и ток 0, 025-0, 2 А при напряжении 220 В переменного тока. Допустимая частота переключений достигает 6000 в час. Износостойкость составляет переключений.
Рис. 15.10. Управление герконом с помощью ферромагнитного экрана: а – геркон 1 срабатывает при удалении экрана 4 от постоянного магнита 2; б – геркон 1 срабатывает при приближении к постоянным магнитам 2 и 3 экрана 4; в – геркон срабатывает при удалении экрана 4 из зазора между герконом и постоянным магнитом 2
Современные требования к надежности и увеличенной частоте срабатывания привели к созданию бесконтактных путевых выключателей, в которых рабочий орган воздействует не на контакт, а на бесконтактные датчики. Датчики могут быть индуктивными, индукционными, магнитомодуляционными, оптическими и др. Вырабатываемый датчиками сигнал используется для управления электроприводом. На базе оптронных элементов создан путевой выключатель серии ВПФ-11-01 (рис. 15.11). Источником светового сигнала является арсенид-галлиевый светодиод 1, приёмником – кремниевый фотодиод 3. Выключатель обеспечивает отключение привода при повороте выходного вала на заданный угол. На вал рабочего органа устанавливается сектор 2, проходящий между источником света и приемником. Сигнал от фотодиода 3 подается на усилительный элемент 4, после чего поступает на формирователь прямоугольных импульсов 5. Выходной сигнал блока 5 подается на выход через выходной усилитель 7 и через блок 6 ИЛИ-НЕ. В результате на выходах формируется выходной сигнал и его инверсия. Угол, при котором происходит затемнение приемника, может регулироваться от 2 до 3180. В бесконтактном путевом выключателе БВК-24 (рис. 15.12) используется индуктивный датчик на двух ферритовых магнитопроводах I, II с обмотками. Управление датчиком осуществляется с помощью алюминиевой пластины, жестко связанной с рабочим органом контролируемого механизма. При вхождении пластины в зазор между магнитопроводами в ней наводятся вихревые токи, за счет чего магнитная связь между обмотками положительной обратной связи и отрицательной магнитопроводов I, II ослабляется.
Рис. 15.11. Путевой выключатель на оптронных элементах
Рис. 15.12. Схема бесконтактного путевого переключателя БВК-24
Это явление используется для получения генераторного режима усилителя на транзисторе VT. В результате через реле К начинает протекать ток, и оно срабатывает. При выходе пластины из зазора под действием отрицательной обратной связи от обмотки генераторный режим прекращается и реле К отключается.
|