Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Методы выявления и оценки корреляционной связи






Для выявления наличия и характера корреляционной связи между двумя признаками в статистике используется ряд методов.

1. Рассмотрение параллельных данных (значений x и y в каждой из n единиц). Единицы наблюдения необходимо расположить по возрастанию значений факторного признака х (как в таблице справа) и затем сравнить с ним (визуально) поведение результативного признака у.

В нашей задаче в 6 случаях по мере увеличения значений x увеличиваются и значения y, а в 5 случаях этого не происходит, поэтому затруднительно говорить о прямой связи между х и у.

2. Графический метод – это графическое изображение корреляционной зависимости. Для этого, имея n взаимосвязанных пар значений x и y и пользуясь прямоугольной системой координат, каждую такую пару изображают в виде точки на плоскости с координатами x и y. Совокупность полученных точек представляет собой корреляционное поле (рис. 1), а соединяя последовательно нанесенные точки отрезками, получают ломаную линию, именуемую эмпирической линией регрессии (рис. 2).

Рис. 1. Корреляционное поле Рис. 2. Эмпирическая линия регрессии

Визуально анализируя график, можно предположить характер зависимости между признаками x и y. В нашей задаче эмпирическая линия регрессии (рис.2) похожа на восходящую прямую, что позволяет выдвинуть гипотезу о наличии прямой зависимости между величиной стоимостного внешнеторгового товарооборота и величиной таможенных платежей в федеральный бюджет.

3. Метод аналитических группировок используется при большом числе наблюдений для выявления корреляционной связи между двумя количественными признаками. Чтобы выявить наличие корреляционной связи между двумя признаками, проводится группировка единиц совокупности по факторному признаку х и для каждой выделенной группы рассчитывается среднее значение результативного признака . Если результативный признак у зависит от факторного х, то в изменении среднего значения будет прослеживаться определенная закономерность. Примером такой группировки могут служить данные об издержках обращения предприятий оптовой торговли с различным товарооборотом (см. табл. 2).

Таблица 2. Условные пример аналитической группировки

Оптовый товарооборот, млн.руб. Количество предприятий Издержки обращения, % к оптовому товарообороту
менее 25 26-50 51-100 101-200 201-500 более 501   46, 0 26, 5 24, 4 23, 0 17, 6 16, 9

В последнем столбце табл. 2 приведены средние величины, рассчитанные на основе индивидуальных данных об издержках отдельных предприятий каждой группы. Данные таблицы 2 свидетельствуют, что чем крупнее товарооборот, тем меньше издержки обращения. Таким образом, с помощью простой аналитической группировки можно выявить наличие зависимости между рассматриваемыми показателями: объемом товарооборота как показателем размера предприятий и средним уровнем издержек обращения.

4. Коэффициент корреляции знаков (Фехнера) – простейший показатель тесноты связи, основанный на сравнении поведения отклонений индивидуальных значений каждого признака (x и y) от своей средней величины. При этом во внимание принимаются не величины отклонений () и (), а их знаки («+» или «–»). Определив знаки отклонений от средней величины в каждом ряду, рассматривают все пары знаков и подсчитывают число их совпадений (С) и несовпадений (Н). Тогда коэффициент Фехнера рассчитывается как отношение разности чисел пар совпадений и несовпадений знаков к их сумме, т.е. к общему числу наблюдаемых единиц:

. (4)

Очевидно, что если знаки всех отклонений по каждому признаку совпадут, то КФ= 1, что характеризует наличие прямой связи. Если все знаки не совпадут, то КФ=– 1(обратная связь). Если же å С=å Н, то КФ= 0. Итак, как и любой показатель тесноты связи, коэффициент Фехнера может принимать значения от 0 до 1. Однако, если КФ= 1, то это ни в коей мере нельзя воспринимать как свидетельство функциональной зависимости между х и у.

Средние значения факторного и результативного признаков определяем по формуле средней арифметической простой Ошибка! Источник ссылки не найден.:

; .

В двух последних столбцах таблицы 4 приведены знаки отклонений каждого х и у от своей средней величины. Число совпадений знаков – 10, а несовпадений – 2, тогда определяем коэффициент корреляции знаков (Фехнера) по формуле (4):

КФ=

Таблица 4. Вспомогательная таблица для расчета коэффициента Фехнера

№ п/п x y x – y –
  27, 068 172, 17
  29, 889 200, 90
  33, 158 232, 10
  34, 444 231, 83
  37, 299 246, 53 + +
  37, 554 236, 99 +
  37, 755 233, 40 +
  37, 909 256, 43 + +
  38, 348 261, 89 + +
  39, 137 259, 36 + +
  40, 370 253, 62 + +
  46, 298 278, 87 + +
Итого 439, 229 2864, 09    

Обычно такое значение показателя тесноты связи характеризует заметную прямую зависимость между x и y, однако, следует иметь в виду, что поскольку КФ зависит только от знаков и не учитывает величину самих отклонений х и у от их средних величин, то он практически характеризует не столько тесноту связи, сколько ее наличие и направление.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал