Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Центральное и параллельное проецирование






Aп
S  
A
Геометрической фигурой называют любое множество точек. Геометрических фигур существует много, но основных только три - точка, прямая (линия) и плоскость. В начертательной геометрии все фигуры и предметы отображаются на плоскость двумя основными способами: центральным проецированием и параллельным проецированием. Чтобы получить цетральные проекции, необходимо задаться плоскостью проекций 1 и центром проекций – точкой S, не лежащей в этой плоскости. Чтобы спроецировать некоторую точку А пространства на плоскость П нужно через центр проецирования S и точку А провести прямую (проецирующий луч) до пересечения ее с плоскостью П в точке Aп. Точку Ап называют центральной проекцией точки А

 

 

Метод центрального проецирования достаточно сложен и в

значительной мере искажает форму и размеры оригинала, так как

не сохраняет параллельности прямых и отношения отрезков. По этому на практике чаще пользуются методом параллельного проецирования. Параллельное проецирование можно рассматривать как частный случай центрального проецирования с бесконечно удаленным центром проекций. Осуществляется оно пучком параллельных проецирующих лучей заданного направления. Пусть требуется построить параллельную проекцию кривой k на плоскость П 1(рис.1.2). Спроецируем в направлении s все точки кривой k на плоскость П 1. Чтобы спроецировать точки указанной кривой, например А, В, С, нужно провести через них прямые, параллельные направлению s, до пересечения с плоскостью П 1. Точки пересечения A 1, B 1, C 1 проецирующих лучей с плоскостью П 1 и будут параллельными проекциями точек А, В и С. Таким образом можно построить проекции множества точек кривой k. В зависимости от направления проецирования по отношению к плоскости проекций П 1 различают два вида параллельных проекций: косоугольную, когда проецирующие лучи не перпендикулярны к плоскости П 1 (рис. 1.2, кривая k), и прямоугольную (или ортогональную), когда проецирующие лучи перпендикулярны к плоскости проекций (рис.1.2, прямая а). Несмотря на то, что параллельное проецирование по сравнению с центральным дает меньшую наглядность, параллельные проекции, особенно ортогональные, обладают удобоизмеримостью и простотой построения. Поэтому ортогональное проецирование широко распространено в технике и является основным методом начертательной геометрии.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал