Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Пылевато-глинистых грунтов
Влажность грунтов определяют высушиванием пробы грунта при температуре 105°С до постоянной массы. Отношение разности масс пробы до и после высушивания к массе абсолютно сухого грунта дает значение влажности, выражаемое в процентах или долях единицы. Долю заполнения пор грунта водой — степень влажности Sr рассчитывают по формуле (см. табл. 1.3). Влажность песчаных грунтов (за исключением пылеватых) изменяется в неболь, ших пределах и практически не влияет на прочностные и деформационные свойства этих грунтов. Характеристики пластичности пылевато-глинистых грунтов — это влажности на границах текучести Wl и раскатывания шР, определяемые в лабораторных условиях, а также число пластичности /р и показатель текучести II, вычисляемые по формулам (см. табл. 1.3). Характеристики wL, wP и Ip являются косвенными показателями состава (гранулометрического и минералогического) пылевато-глинистых грунтов. Высокие значения этих характеристик свойственны грунтам с большим содержанием глинистых частиц, а также грунтам, в минералогический состав которых входит монтмориллонит. 1.3. КЛАССИФИКАЦИЯ ГРУНТОВ Грунты оснований зданий и сооружений подразделяются на два класса [1]: скальные (грунты с жесткими связями) и нескальные (грунты без жестких связей). В классе скальных грунтов выделяют магматические, метаморфические и осадочные породы, которые подразделяются по прочности, размягчаемости и растворимости в соответствии с табл. 1.4. К скальным грунтам, прочность которых в водонасыщенном состоянии менее 5 МПа (полускальные), относятся глинистые сланцы, песчаники с глинистым цементом, алевролиты, аргиллиты, мергели, мелы. При водонасыщении прочность этих грунтов может снижаться в 2—3 раза. Кроме того, в классе скальных грунтов выделяются также искусственные— закрепленные в естественном залегании трещиноватые скальные, и нескальные грунты. Эти грунты подразделяются по способу закрепления (цементация, силикатизация, битумизация, смолизация, обжиг и др.) и по нределу прочности на одноосное сжатие после закрепления так же, как и скальные грунты (см. табл. 1.4). Нескальные грунты подразделяют на крупнообломочные, песчаные, пылевато-глинистые, биогенные и почвы. ■ К крупнообломочным относятся несцементированные грунты, в которых масса обломков крупнее 2 мм составляет 50 % и более. Песчаные — это грунты, содержащие менее 50 % частиц крупнее 2 мм и не обладающие свойством пластичности (число пластичности /р< Свойства крупнообломочного грунта при содержании песчаного заполнителя более 40, % и пылевато-глинистого более 30 % определяются свойствами заполнителя в могут устанавливаться по испытанию заполнителя. При меньшем содержании заполнителя свойства крупнообломочного грунта устанавливают испытанием грунта в целом. При определении свойств песчаного заполнителя учитывают следующие его характеристики — влажность, плотность, коэффициент пористости, а пылевато-глинистого заполнителя — дополнительно число пластичности и консистенцию. Основным показателем песчаных грунтов, определяющим их прочностные и деформационные свойства, является плотность сложения. По плотности сложения пески подразделяются по коэффициенту пористости е, удельному сопротивлению грунта при статическом зондировании qc и условному сопротивлению грунта при динамическом зондировании q& (табл. 1.7). При относительном содержании органического вещества 0, 03< /onj< s: 0, l песчаные грунты называют грунтами с примесью органических веществ. По степени засоленности крупнообломочные и песчаные грунты подразделяют на незаселенные и засоленные. Крупнообломочные грунты относятся к засоленным, если суммарное содержание легко- и средне-растворимых солей (% от массы абсолютно сухого грунта) равно или более: 2 % — при содержании песчаного заполнителя менее 40 % или пылевато-глинистого заполнителя менее 30 %; 0, 5 % ■ — при содержании песчаного заполнителя 40 % и более; 5 % — при содержании пылевато-глинистого заполнителя 30 % и более. Песчаные грунты относятся к засоленным, если суммарное содержание указанных солей составляет 0, 5 % и более. Пылевато-глинистые грунты подразделяют во числу пластичности h (табл. 1.8) и по кон- систенции, характеризуемой показателем текучести 1L (табл. 1.9). Среди пылевато-глинистых грунтов необходимо выделять лёссовые грунты и илы. Лёссовые грунты — это макропористые грунты, содержащие карбонаты кальция и способные при замачивании водой давать под нагрузкой просадку, легко размокать и размываться. Ил — водонасыщенный современный осадок водоемов, образовавшийся в результате протекания микробиологических процессов, имеющий влажность, превышающую влажность на границе текучести, и коэффициент пористости, значения которого приведены в табл. 1.10. Пылевато-глинистые грунты (супеси, суглинки и глины) называют грунтами с примесью органических веществ при относительном содержании этих веществ 0, 05< /om< 0, l. По степени засоленности супеси, суглинки и глины подразделяют на незаселенные и засоленные. К засоленным относятся грунты, в которых суммарное содержание легко- и среднераство-римых солей составляет 5 % и более. Среди пылевато-глинистых грунтов необходимо выделять грунты, проявляющие специфические неблагоприятные свойства при замачивании: просадочные и набухающие. К про-садочным относятся грунты, которые под действием внешней нагрузки или собственного веса при замачивании водой дают осадку (просадку), и при этом относительная просадоч-ность Ss/> 0, 01. К набухающим относятся грунты, которые при замачивании водой или химическими растворами увеличиваются в объеме, и при этом относительное набухание без нагрузки eS! »> 0, 04. В особую группу в нескальных грунтах выделяют грунты, характеризуемые значительным содержанием органического вещества: биогенные (озерные, болотные, аллювиально-болотные). В состав этих грунтов входят за-торфованные грунты, торфы и сапропели. К за-торфованным относятся песчаные и пылевато-глинистые грунты, содержащие в своем составе 10—50 % (по массе) органических веществ. При содержании органических веществ 5Q % и более грунт называется торфом. Сапропели (табл. 1.11)—пресноводные илы, -содержащие более 10 % органических веществ и имеющие коэффициент пористости, как правило, более 3, а показатель текучести более 1. Почвы — это природные образования, слагающие поверхностный слой земной коры и обладающие плодородием. Подразделяют почвы по гранулометрическому составу так же, как крупнообломочные и песчаные грунты, а по числу пластичности, как пылевато-глинистые грунты. К нескальным искусственным грунтам относятся грунты, уплотненные в природном залегании различными методами (трамбованием, укаткой, виброуплотнением, взрывами, осушением и др.), насыпные и намывные. Эти грунты подразделяются в зависимости от состава и характеристик состояния так же, как и природные нескальные грунты. Скальные и нескальные грунты, имеющие отрицательную температуру и содержащие в своем составе лед, относятся к мерзлым грунтам, а если они находятся в мерзлом состой-нии от 3 лет и более, то к вечномерзлым. 1.4. ДЕФОРМИРУЕМОСТЬ ГРУНТОВ ПРИ СЖАТИИ Характеристикой деформируемости грунтов при сжатии является модуль деформаций, который определяют в полевых и лабораторных условиях. Для предварительных расчетов, а также и окончательных расчетов оснований зданий и сооружений II и III класса допускается принимать модуль деформации по табл. 1.12 и 1.13. 1.4.1. Определение модуля деформации в полевых условиях Модуль деформации определяют испытанием грунта статической нагрузкой, передаваемой на штамп [3]. Испытания проводят в шурфах жестким круглым штампом площадью 5000 см2, а ниже уровня грунтовых вод и на больших глубинах — в скважинах штампом площадью 600 см2. Для определения модуля деформации используют график зависимости осадки от давления (рис. 1.1), на котором выделяют линейный участок, проводят через него осредняющую прямую и вычисляют модуль деформации Е в соответствии с теорией линейно-деформируемой среды по формуле При испытании грунтов необходимо, чтобы толщина слоя однородного грунта под штампом была не менее двух диаметров штампа. Модули деформации изотропных грунтов можно определять в скважинах с помощью прессиометра (рис. 1.2) [3]. В результате испытаний получают график зависимости приращения радиуса скважины от давления на ее стенки (рис. 1.3). Модуль деформации определяют на участке линейной зависимости деформации от давления между точкой р\, соответствующей обжатию неровностей стенок скважины, и точкой р2, после которой начинается интенсивное развитие пластических деформаций в грунте. Модуль деформации вычисляют ПО ftlOnMVJlft Коэффициент k определяется, как правило, путем сопоставления данных прессиометрии с результатами параллельно проводимых испытаний того же грунта штампом. Для сооружений II в III класса допускается принимать в зависимости от глубины испытания h следующие значения коэффициентов к в формуле (1.2): при ft< 5 м 6 = 3; при 5м< /кЮ м k = 2; при 10 м< /г< 20 м 6=1, 5. Для песчаных и пылевато-глинистых грунтов допускается определять модуль деформации' на основе результатов статического и динамического зондирования грунтов. В качестве показателей зондирования принимают: при статическом зондировании — сопротивление грунта погружению конуса зонда qc, а при динамическом зондировании — условное динами, ческое сопротивление грунта погружению конуса qa, Для суглинков и глин E—7qc и Я—6#< *; для песчаных грунтов E—3qc, а значения £ по данным динамического зондирования приведены в табл. 1.14. Для сооружений I и II класса
является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов штампами. Для сооружений III класса допускается определять Е только по результатам зондирования. 1.4.2. Определение модуля деформации в лабораторных условиях В лабораторных условиях применяют компрессионные приборы (одометры), в которых образец грунта сжимается без возможности бокового расширения. Модуль деформации вычисляют на выбранном интервале давлений Др = Р2—Pi графика испытаний (рис. 1.4) по формуле Давление pi соответствует природному, а р2 — предполагаемому давлению под подошвой фундамента. Значения модулей деформации по компрессионным испытаниям получаются для всех грунтов (за исключением сильносжимаемых) заниженными, поэтому они могут использоваться для сравнительной оценки сжимаемости грунтов площадки или для оценки неоднородности по сжимаемости. При расчетах осадки эти данные следует корректировать на основе сопоставительных испытаний того же грунта в полевых условиях штампом. Для четвертичных супесей, суглинков и глин можно принимать корректирующие коэффициенты т (табл. 1.16), при этом значения Еовц необходимо определять в интервале давлений 0, 1—0, 2 МПа. 1.5. ПРОЧНОСТЬ ГРУНТОВ Сопротивление грунта срезу характеризуется касательными напряжениями в предельном состоянии, когда наступает разрушение грунта [4]. Соотношение между предельными касательными т и нормальными к площадкам сдвига а напряжениями выражается условием прочности Кулона—Мора
1.5.1. Определение прочностных характеристик в лабораторных условиях В практике исследований грунтов применяют метод среза грунта по фиксированной плоскости в приборах одноплоскостного среза. Для получения < р и с необходимо провести срез не менее трех образцов грунта при различных значениях вертикальной нагрузки. По полученным в опытах значениям сопротивления срезу т строят график линейной зависимости T = f(a) и находят угол внутреннего трения ф и удельное сцепление с (рис. 1.5). Раз- личают две основные схемы опыта: медленный срез предварительно уплотненного до полной консолидации образца грунта (консолидиро-ванно-дренированное испытание) и быстрый срез без предварительного уплотнения (некой-солидированно-недренированное испытание).
Глав-а 2. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ
|