![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Задача В13. Задания на проценты, сплавы, растворы, на движение по окружности и нахождение средней скорости ⇐ ПредыдущаяСтр 2 из 2
В 2010 году задание В13 пополнилось новыми задачами, и на пробном ЕГЭ для многих из вас они оказались неожиданными. Теперь задание В13 включает в себя практически все типы текстовых задач, которые раньше предлагались на вступительных экзаменах в вузы. Кроме привычных уже задач на движение и работу, появились задания на проценты, на растворы, сплавы и смеси, на движение по окружности и нахождение средней скорости. О них мы и расскажем. Начнем с задач на проценты. С этой темой мы уже познакомились в задаче В1. В частности, сформулировали важное правило: за 100 Мы также вывели полезные формулы: Воспользуемся ими для решения задач В13. 1. В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 8 По условию, в 2009 году число жителей выросло на 8 Следующая задача предлагалась на пробном ЕГЭ по математике в декабре 2010 года. Она проста, но справились с ней немногие. 2. В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 4 На первый взгляд кажется, что в условии ошибка и цена акций вообще не должна измениться. Ведь они подорожали и подешевели на одно и то же число процентов! Но не будем спешить. Пусть при открытии торгов в понедельник акции стоили
По условию, акции в итоге подешевели на 4 Получаем, что Поделим обе части уравнения на По смыслу задачи, 3. Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 20000 рублей, через два года был продан за 15842 рублей. Эта задача тоже решается по одной из формул, приведенных в начале статьи. Холодильник стоил 20000 рублей. Его цена два раза уменьшилась на
4. Четыре рубашки дешевле куртки на 8 Пусть стоимость рубашки равна Стоимость одной рубашки — в 4 раза меньше: Ответ: 15. 5. Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67 Нарисуем таблицу. Ситуации, о которых говорится в задаче («если бы зарплата мужа увеличилась, если бы стипендия дочки уменьшилась...») назовем «ситуация А» и «ситуация В».
Осталось записать систему уравнений. Но что же мы видим? Два уравнения и три неизвестных! Мы не сможем найти Во втором уравнении мы тоже вычтем из обеих частей выражение Ответ: 27. Следующий тип задач — задачи на растворы, смеси и сплавы. Они встречаются не только в математике, но и в химии. Мы расскажем о самом простом способе их решения. 6. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора? В решении подобных задач помогает картинка. Изобразим сосуд с раствором схематично — так, как будто вещество и вода в нем не перемешаны между собой, а отделены друг от друга, как в коктейле. И подпишем, сколько литров содержат сосуды и сколько в них процентов вещества. Концентрацию получившегося раствора обозначим Первый сосуд содержал 0, 12
7. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора? Пусть масса первого раствора равна Получаем: 0, 15 Ответ: 17. 8. Виноград содержит 90 Внимание! Если вам встретилась задача «о продуктах», то есть такая, где из винограда получается изюм, из абрикосов урюк, из хлеба сухари или из молока творог — знайте, что на самом деле это задача на растворы. Виноград мы тоже можем условно изобразить как раствор. В нем есть вода и «сухое вещество». У «сухого вещества» сложный химический состав, а по его вкусу, цвету и запаху мы могли бы понять, что это именно виноград, а не картошка. Изюм получается, когда из винограда испаряется вода. При этом количество «сухого вещества» остается постоянным. В винограде содержалось 90 Составим уравнение: Ответ: 190. 9. Имеется два сплава. Первый сплав содержит 10 Пусть масса первого сплава равна Запишем простую систему уравнений:
Решая, получим, что Ответ: 100. 10. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси? Пусть масса первого раствора Решаем получившуюся систему. Сразу умножим обе части уравнений на 100, поскольку с целыми коэффициентами удобнее работать, чем с дробными. Раскроем скобки.
Ответ: 60. Задачи на движение по окружности также оказались сложными для многих школьников. Решаются они почти так же, как и обычные задачи на движение. В них тоже применяется формула 11. Из пункта A круговой трассы выехал велосипедист, а через 30 минут следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 30 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч. Во-первых, переведем минуты в часы, поскольку скорость надо найти в км/ч. Скорости участников обозначим за Запишем эти данные в таблицу:
Оба проехали одинаковые расстояния, то есть Затем мотоциклист второй раз обогнал велосипедиста. Произошло это через 30 минут, то есть через Нарисуем вторую таблицу.
А какие же расстояния они проехали? Мотоциклист обогнал велосипедиста. Значит, он проехал на один круг больше. Это и есть секрет данной задачи. Один круг — это длина трассы, она равна 30 км. Получим второе уравнение: Решим получившуюся систему.
Получим, что Ответ: 80. 12. Часы со стрелками показывают 8 часов 00 минут. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой? Это, пожалуй, самая сложная задача В13. Конечно, есть простое решение — взять часы со стрелками и убедиться, что в четвертый раз стрелки поравняются через 4 часа, ровно в 12.00. За один час минутная стрелка проходит один круг, а часовая Минутная стрелка пройдет на Решив его, получим, что Решив его, получим, что Ответ полностью согласуется с «экспериментальным» решением!: -) На экзамене по математике вам может также встретиться задача о нахождении средней скорости. Запомним, что средняя скорость не равна среднему арифметическому скоростей. Она находится по специальной формуле: Если участков пути было два, то 13. Путешественник переплыл море на яхте со средней скоростью 20 км/ч. Обратно он летел на спортивном самолете со скоростью 480 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч. Мы не знаем, каким было расстояние, которое преодолел путешественник. Знаем только, что это расстояние было одинаковым на пути туда и обратно. Для простоты примем это расстояние за 1 (одно море). Тогда время, которое путешественник плыл на яхте, равно Ответ: 38, 4. Покажем еще один эффектный прием, помогающий быстро решить систему уравнений в задаче В13. 14. Андрей и Паша красят забор за 9 часов. Паша и Володя красят этот же забор за 12 часов, а Володя и Андрей — за 18 часов. За сколько часов мальчики покрасят забор, работая втроем? Мы уже решали задачи на работу и производительность. Правила те же. Отличие лишь в том, что здесь работают трое, и переменных будет тоже три. Пусть
Андрей и Паша покрасили забор за 9 часов. Мы помним, что при совместной работе производительности складываются. Запишем уравнение: Аналогично, Тогда Можно искать Значит, работая втроем, Андрей, Паша и Володя красят за час одну восьмую часть забора. Весь забор они покрасят за 8 часов. Ответ: 8. В следующей статье мы расскажем о том, что такое арифметическая прогрессия, и на этом завершим обзор задач В13. Весь банк заданий ФИПИ по математике вы можете найти на официальном сайте mathege.ru.
|