Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Перспективные преобразователи энергии для жидкого водорода






В середине 1990-х многие автомобильные компании обратили свой взор на электромобили с топливными элементами (ТЭ). Притягательность топливных элементов имеет серьезное основание. Действительно, никаких движущихся частей, никаких взрывов. Водород не сгорает, как это происходит в тепловом двигателе, а разлагается внутри топливных элементов (или ячеек, как их иногда именуют) на разноименно заряженные ионы и электроны. Именно электроны и превращаются в полезный электрический ток, питающий цепь бортовой силовой установки, а что касается ионов водорода, то их связывает кислород, который в составе обычного воздуха подается внутрь топливного элемента, образуя " выхлоп" - водяной пар.

Однако, позже выяснелось, что топливные элементы обладают рядом серьезных недостатков. И прежде всего, высокой стоимость и коротким сроком службы. Так, американский минивэн «HydroGen3», работающий на топливных элементах стоит около $1 млн. и для большинства автолюбителей автомобили на топливных элементах очевидно так и останутся несбыточной мечтой. Более того, несмотря на заявленное разработчиками топливных элементов высокий теоретический к.п.д. (около 70%), эффективность даже лучших японских топливных элементов в настоящее время составляет менее 30%. Кроме того, применение топливных элементов на транспортных средствах дает существенный прирост массогабаритных характеристик автомобиля.

Для массового применения топливных элементов в автотранспорте их стоимость должна быть снижена до 200 долл./кВт (при современной стоимости от 5 до 10 тыс. долл./кВт). Вопросы дальнейшего развития ТЭ во многом связаны со снижением их стоимости, что определяется в основном уменьшением расхода платиновых металлов (используемых в качестве катализатора) и снижением стоимости, используемых в качестве мембраны фторированных и перфторированных пленок. Поскольку решение большинства из описанных выше проблем требует революционных научных открытий, многие американские исследователи подвергают сомнению целесообразность взятого правительством США курса на создание дорогостоящих демонстрационных проектов автомобилей с топливными элементами. По их мнению, технологии в создании топливных элементов достигли своих пределов, и они не видят возможности для дальнейшей их усовершенствования. Поэтому, сегодня технология топливных элементов развивается в основном только из-за перспектив по обеспечению нулевого уровня токсичности.

Более перспективным является другой путь внедрения жидкого водорода на автотранспорте - сжигание его в двигателе внутреннего сгорания (ДВС). Такой подход исповедуют ряд ведущих автостроительных компаний, таких как, например, «BMW», «Ford» и «Mazda». Вместо применения спорных и дорогостоящих топливных элементов, инженеры этих компаний пытаются наладить работу на водороде старого доброго двигателя внутреннего сгорания.
На «BMW» создан опытный седан «745H», V-образная “восьмерка” которого попросту сжигает водородное горючее – как бутан-пропан или природный газ в двигателях газобаллонных автомобилей. Жидкий водород запасается в криогенном баке; газ специальными электронноуправляемыми форсунками подается в цилиндры. При сильном обеднении водород-воздушной смеси (в 2 с лишним раза против стехимометрического состава) в камерах сгорания почти не образуются вредоносные оксиды азота (канцерогены); другие загрязнители при сжигании водорода в воздушной среде не формируются вовсе.

Так что из выхлопных труб «745H» в атмосферу поступает один только водяной пар; мечта “зеленых” близка к реальному воплощению.

В этой же компании создан самый быстрый на сегодняшний день автомобиль, работающий на водородном топливе, рис. 4. Модель, получившая обозначение «H2R», развивает скорость свыше 300 км/ч.

Рис. 3

И хотя на текущий момент полноценной замены традиционному ДВС нет, очевидно, уже скоро появится новое направление в двигателестроении на водородном топливе, которое имеет все шансы стать конкурентным. Речь идет о двигателях Стирлинга. Этот двигатель до конца XX века широко не применялся на автотранспорте из-за более сложной по сравнению с двигателем внутреннего сгорания конструкции, большей материалоемкости и стоимости.
Однако, в посл

днее время в ведущих мировых обзорах по энергопреобразующей технике, двигатель Стирлинга рассматривается как двигатель, обладающий наибольшими возможностями для дальнейшей разработки в применения водорода как моторного топлива. Низкий уровень шума, большой ресурс, сравнимые размеры и масса, хорошие характеристики крутящегося момента - все эти параметры дают возможность машинам Стирлинга в ближайшее время вытеснить двигатели внутреннего сгорания и топливные элементы в области водородной энергетики. Красноречивым примером подтверждения этого, может являться практика создания рядом зарубежных фирм, таких как «НАСА», «Кокумс», «Мицубиси дзюкоге», анаэробных энергетических установок для космических летательных аппаратов и подводных лодок, в которых первоначально применяемые электрохимические генераторы на топливных элементах практически полностью были заменены на стирлинг-генераторы. Ниже на рис. 5 представлена принципиальная схема двигателя Стирлинга.

Рис. 5

Двигатель Стирлинга является уникальной тепловой машиной, поскольку его теоретическая эффективность равна максимальной эффективности тепловых машин - эффективности цикла Карно. Он работает за счет теплового расширения газа, за которым следует сжатие газа после его охлаждения. Двигатель Стирлинга содержит некоторый постоянный объем рабочего газа, который перемещается между «холодной» частью (обычно находящейся при температуре окружающей среды) и «горячей» частью, которая обычно нагревается за счет сжигания любого вида топлива или других источников теплоты. Нагрев производится снаружи, поэтому двигатель Стирлинга относят к двигателям внешнего сгорания. Поскольку процесс горения осуществляется вне рабочих цилиндров и протекает равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура, при отсутствии газораспределительного механизма клапанов.
Необходимо отметить, что рядом зарубежных фирм начато производство двигателей, технические характеристики которых уже сейчас превосходят ДВС и топливные элементы. Достигнутые в настоящее время к.п.д. в серийных и опытных образцах двигателях Стирлинга даже при умеренных температурах нагрева (600…700 0С) представляются весьма внушительными цифрами – до 40%. В лучших зарубежных образцах двигателей Стирлинга удельная масса составляет 1, 2 – 3 кг/кВт, а эффективный к.п.д. до 45%.

В настоящее время в Российской Федерации компанией, ведущей разработки по созданию машин, работающих циклу Стирлинга, является ООО «Инновационно-исследовательский центр «Стирлинг-технологии», в которой созданы опытно-промышленные образцы отечественных двигателей.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал