Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Пайка, ее физико-химические особенности, технология и технологический процесс






 

Пайкой называется образование соединения с межатомными связями путем нагрева соединяемых материалов ниже температуры их плавления, смачивания их припоем, затекания припоя в зазор и последующей его кристаллизации (ГОСТ 17325—79).

При пайке автономного плавления паяемого материала не происходит, так как процесс осуществляется при нагреве до температуры ниже температуры его солидуса. Однако паяемый металл контактирует с припоем в ином агрегатном (жидком) состоянии. При этом паяемый металл и припой, имеющие/химическое сродство, представляют неравновесную систему, так как на их границе существует градиент концентраций и энергии. Поэтому процессы взаимодействия материалов при пайке связаны с обменом веществом и передачей энергии, происходящими специфическим образом. Такое взаимодействие базируется на взаимодополняющих феноменологических (макроскопических) и микроскопических методах анализа. Важнейшим феноменологическим методом анализа при этом является термодинамика.

Переход термодинамической системы, паяемый материал - припой из весьма неустойчивого лабильного в более стабильное или метастабильное состояние происходит необратимо и состоит из двух стадий: активируемой и самопроизвольной неактивируемой. Энергетическим стимулом первой активируемой стадии перехода системы в более стабильное состояние при постоянном давлении р0 и температуре Т0 служит непрерывное увеличение потенциальной энергии активации на границе двух фаз за счет кинетической энергии, а второй неактивируемой стадии — непрерывное уменьшение термодинамического изобарного потенциала системы (диффузионная стадия).

Переход из одного равновесного состояния в другое с преодолением энергии активации Q происходит через особые неравновесные состояния — активируемые состояния атомов. По гипотезе Аррениуса в 1889 г. для газов, распространенной для твердых и жидких тел В. А. Левичем, в единице объема активируются не все N атомов, а лишь те N0, которые при температуре То обладают избыточной энергией Q: n0 = Ne-QRT, где R — газовая постоянная. Энергия активации Q — это потенциальная энергия, которая увеличивается за счет кинетической энергии системы, особенно при эндотермических процессах (например, плавлении). При передаче кинетической энергии в термически активируемом процессе порциями потенциальная энергия также увеличивается в виде флуктуации. Таким образом, активируемое состояние является переходным (промежуточным состоянием) с повышенной потенциальной энергией. Оно возможно не только при поглощении теплоты (эндотермических реакциях), но и при деформации. Активируемые состояния возникают при фазовых переходах первого рода.

К фазовым переходам первого рода относятся фазовые превращения однокомпонентных систем, объем которых при температуре Г0 и давление р0 изменяется скачком и одновременно происходит выделение или поглощение теплоты. К ним относятся равновесные переходы из одного агрегатного состояния в другое, полиморфные превращения, связанные с изменением температуры и давления в процессах диффузии, образования зародышей новых фаз при кристаллизации и распаде твердых растворов и др. Самопроизвольные фазовые переходы первого рода и их изменения по второму закону термодинамики стимулируются условиями dS > 0 и dz < O при постоянных давлении р и температуре t, где S — энтропия; z —термодинамический (изобарный) потенциал.

К фазовым переходам второго рода относятся равновесные превращения однофазовой системы, при которых температура То и давление рo и первые частные производные z равны нулю, но вторые частные производные изменяются скачком (например, температурный коэффициент объемного расширения и сжимаемость). Фазовый переход первого рода происходит самопроизвольно в результате конечных флуктуации местной и общей энергии (энергии активации) на границе контактирующих материалов. При этом степень активации атомов поверхностного слоя жидкой фазы более высокая, чем степень активации атомов контактирующей с ним твердой фазы, вследствие большой подвижности атомов в жидком состоянии.

Наиболее известны две формы движения (процессов) и фазовых переходов (превращений): диффузионное и бездиффузионное. При диффузионных формах движения и фазовых переходов спонтанное перемещение атомов и вакансий происходит статистически, с обменом местами. Такие переходы характерны для контакта веществ в одинаковом агрегатном состоянии. При бездиффузионном движении или переходе перемещение атомов происходит кооперативно (коллективно) за один акт или последовательно за несколько актов, без обмена атомов и вакансий на расстояния, не превышающие межатомные. Следовательно, при контакте паяемого материала с припоем, находящихся в различном агрегатном состоянии, процессы их взаимодействия должны развиваться в две стадии: сначала должна наступить кинетическая (бездиффузионная) активируемая стадия, а потом диффузионная стадия. При этом более равновесное состояние такой системы при смачивании основного материала жидким припоем, вероятнее всего, может быть достигнуто при преодолении относительно высокой энергии активации ВС системы (рис. 1) в результате расплавления твердого металла по кинетическому режиму, т. е. практически по бездиффузионному механизму. Поэтому продуктом первой активирующей стадии должна быть жидкая фаза. Только после этого может наступить диффузионная стадия растворения, т. е. переход атомов паяемого металла из прилежащего к нему расплавленного на первой стадии слоя в остальной объем жидкой фазы (припоя). По расчетам А.А. Шебзухоаа, бездиффузионный этап пайки готовым припоем имеет длительность ~0, 01 с. Такой вариант контактного плавления твердых кристаллических веществ в контакте с жидким веществом с тем же типом связи (например, металлом), в отличие от контактно-реактивного плавления двух твердых веществ, был назван контактным твердожндким плавлением, в контакте с паром — твердогазовым плавлением.

Вследствие контактного плавления металлических деталей при пайке могут изменяться их форма, размеры и состояние материала. В связи с этим чисто физический разъем паяемого соединения, аналогичный, например, развинчиванию, разъему механических соединений с прокладками, невозможен. Возможны лишь распайка, разъединение по шву в результате плавления при нагреве выше его температуры солидуса, после чего нельзя получить детали в состоянии, аналогичном исходному, так как изменено состояние паяемого металла в местах, смоченных припоем и подвергнутых нагреву при пайке, а также изменены форма и размеры детали. Поэтому паяные соединения деталей не являются разъемными, т. е. такими, форма, размеры, состояние и шероховатость материала которых после разъема не изменяются.

Как известно, под технологией понимают совокупность способов и приемов получения и обработки материалов, заготовки, сборочной единицы или изделия. Последовательность осуществления операций и переходов называется технологическим процессом. Технологический процесс пайки состоит из операций подготовки поверхности паяемого материала и припоя, сборки, собственно пайки, обработки паяного изделия после пайки и контроля качества. В технологическом процессе операции до и после пайки определяются выбранной ее технологией и зависят от конструкции и назначения паяемого изделия, состава и свойств паяемого, технологического и вспомогательного материалов.

Способы пайки объединяют в группы по классификационным признакам: формированию паяного шва (СП1), удалению оксидной пленки (СП2), по источнику нагрева (СПЗ), осуществлению давления на детали (СП4) и по одновременности выполнения паяемых соединений изделия (ГОСТ 17349—79) с соответствующим оснащением, состоящим из нагревательного оборудования и инструмента, оснастки, средств механизации, автоматизации и роботизации. К приемам операции пайки относятся: температурный режим пайки (ТРП), термический цикл пайки (ТЦП), способ введения припоя и контактных прослоек, флюсовых и газовых средств, приложения давления и др.



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал