![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Способы получения когерентных источников
Найти два точечных когерентных источника практически невозможно. Значительно проще поделить волновой фронт или амплитуду излученной волны. Наиболее распространенными методами получения когерентных источников являются: опыт Юнга, бипризма Френеля, билинза Бийе, «кольца» Ньютона, опыт Поля (с помощью плоскопараллельной пластины). 1. Бипризма Френеля (рис.2) состоит из двух остроугольных призм (с малыми преломляющими углами), сложенных основаниями. Обычно обе призмы имеют очень малые преломляющие углы B и C. В сечении бипризма Френеля представляет собой два равнобедренных треугольника с углом A, близким к 180º, тогда угол при вершине очень мал.
2. Воздушный клин (кольца Ньютона). «Кольца Ньютона» представляют собой один из видов интерференции в тонкой пленке, а именно, полосы равной толщины в виде окружностей. Они получаются при наложении линзы радиуса R выпуклой поверхностью на отражающую стеклянную поверхность меньшей кривизны (например, плоскую). Вблизи места соприкосновения получается слой воздуха, толщина которого сравнима с длиной световой волны. Интерференция возникает в результате наложения лучей 1 и 2, после отражения от пластины и линзы (1¢ и 2¢) (рис.4). Полная разность хода между «усиливающими» друг друга лучами 1 и 2 определяется как ∆» 2d∙ λ /2 (величина разности хода увеличена на λ /2вследствие потери полуволны лучом 2 при отражении от оптически более плотной поверхности на границе раздела воздух – стекло). Толщина воздушного зазора d зависит (рис.4) от расстояния r до точки соприкосновения линзы с пластинкой. Из треугольника АОС (рис. 4) имеем На практике кольца Ньютона наблюдают либо невооруженным глазом, помещая его на пути лучей 1 и 2 (рис.4), либо в фокальной плоскости окуляра микроскопа при использовании микроскопа. В отраженном свете в центре интерференционной картины наблюдается темное пятно, которое объясняется тем, что геометрическая разность хода между лучами 1 и 2 в области точки С равна нулю, а полуволна теряется при отражении от оптически более плотной поверхности на границе воздух – стекло. Измеряя радиусы колец и зная длину волны λ, можно было бы найти по вышеприведенным формулам радиус кривизны линзы и обратно – по известному радиусу кривизны найти длину волны. Однако эти формулы неприменимы для опытной проверки. На поверхности даже очищенного стекла всегда присутствуют пылинки, и линза не примыкает плотно к плоскопараллельной пластинке, между ними имеется незначительный зазор величиной h. Вследствие зазора возникает дополнительная разность хода в 2 h. Тогда условие образования темных колец примет вид
при известной величине λ находят R (или, наоборот, при известном R определяется λ). В случае, если рассматриваем «кольца» Ньютона в проходящем свете, тогда не будет дополнительной разности хода в 2 h и, следовательно, там где в отраженном свете наблюдались темные кольца в походящем будут белыми и наоборот.
|