Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Примеры. 1. Привести квадратичную форму к каноническому виду методом Лагранжа и записать соответствующее преобразование

1. Привести квадратичную форму к каноническому виду методом Лагранжа и записать соответствующее преобразование

.

Решение. Следуя алгоритму метода Лагранжа, выделим вначале в квад-ратичной форме все члены, содержащие , и дополним их до полного квадрата:

.

Сделаем в этом выражении замену и подставим его в квадратичную форму. Получим:

.

Далее выделим в члены, содержащие и проделаем с ними анало-гичную процедуру:

Если положить , то квадратичная форма уже не будет содержать смешанных произведений. Примем также , тогда

канонический вид квадратичной формы есть

.

Соответствующее преобразование от переменных к переменным имеет вид:

.

2. Найти ортогональное преобразование, приводящее квадратичную форму к каноническому виду, и записать соответствующий канонический вид этой формы:

.

Решение. В исходном базисе матрица оператора, соответствующая данной квадратичной форме, есть

.

Эта матрица будет определять квадратичную форму канонического вида в ортонормированном базисе , составленном из собственных векторов матрицы . Найдем их.

Характеристическое уравнение для матрицы имеет вид

.

Откуда следует

и .

Как известно собственные векторы матрицы находятся из уравнений

.

Для случая имеем:

.

Ранг матрицы этой системы уравнений (относительно ) равен 1. Следовательно, ФСР системы состоит из двух линейно независимых решений.

Как видно из данной системы, величина принимает произвольные значения, а величины связаны соотношением . В качестве собственных можно выбрать, например, векторы

Эти векторы ортогональны: (если бы они оказались не ортогональными, то их нужно было бы ортогонализировать с помощью стандартной процедуры). Вектор к тому же и нормирован. Откуда следует - . Нормируем теперь вектор :

.

Для случая уравнение, определяющее собственный вектор есть

.

Ранг матрицы этой системы уравнений равен 2. Следовательно она имеет одно линейно независимое решение, например, Отнормируем этот вектор: .

Теперь можно составить искомую матрицу ортогонального преобразования:

.

Исходная квадратичная форма будет иметь следующий канонический вид

.

При этом переменные связаны с переменными соотношением

или

 

3. Построить в прямоугольной системе координат фигуру, определяемую следующим уравнением, предварительно приведя его к каноническому виду

.

Решение. Выделим в этом выражении квадратичную форму . Это три первых слагаемых уравнения .

Матрица квадратичной формы равна . Проведём процедуру приведения квадратичной формы к каноническому виду с помощью ортогонального преобразования. Характеристическое уравнение матрицы имеет вид

.

Его корни таковы: .

Найдём теперь собственные векторы, соответствующие этим корням и отнормрируем их. Для вектора , соответствующего

, имеем

 

В итоге собственный вектор, соответствующий , можно выбрать в виде

.

Анологичная процедура для собственного вектора даёт:

Откуда:

.

После нормировки полученных векторов имеем:

.

Эти векторы представляют собой ортонормированный базис новой системы координат. Матрица ортогонального оператора, приводящего квадратичную форму к каноническому виду , есть

Связь старых и новых координат определяется соотношением .

Учитывая приведенные выражения, приведём заданную квадратичную форму к каноническому виду

 

Это есть каноническое уравнение эллипса в системе координат , которая получается из исходной её поворотом на угол и переносом начала координат в точку .

 

Задачи

Записать матрицу квадратичной формы:

5.1. ;

5.2. ;

5.3. ;

5.4. ;

5.5. ;

5.6. ;

5.7. ;

5.8. ;

5.9. ;

5.10. ;

5.11. .

Найти ранг квадратичной формы:

5.12. ;

5.13. ;

5.14. ;

5.15. ;

5.16. ;

5.17. ;

5.18. ;

5.19. ;

5.20. .

Записать квадратичную форму в матричном виде:

5.21. ;

5.22. ;

5.23. ;

5.24. ;

5.25. ;

5.26. ;

5.27. ;

5.28. ;

5.29. ;

5.30. .

Записать квадратичную форму в виде по заданной

матрице:

5.31. ; 5.32. ;

5.33. ; 5.34. ;

5.35. ; 5.36. ;

5.37. ; 5.38. ;

5.39. ; 5.40. .

Привести квадратичную форму к каноническому виду методом

Лагранжа и записать соответствующее преобразование:

5.41. ;

5.42. ;

5.43. ;

5.44. ;

5.45. ;

5.46. ;

5.47.

5.48.

5.49.

5.50.

5.51. ;

5.52. .

Найти ортогональное преобразование, приводящее квадратичную

форму к каноническому виду и записать соответствующий кано-

нический вид квадратичной формы:

5.53. ;

5.54. ;

5.55. ;

5.56. ;

5.57. ;

5.58. ;

5.59. ;

5.60. ;

5.61. ;

5.62. .

Записать данное уравнение второго порядка в матричном виде и

определить, фигуру какого типа (эллиптического, гиперболическо-

го, параболического) оно определяет:

5.63.

5.64.

5.65.

5.66.

5.67.

5.68.

5.69.

5.70.

5.71.

5.72.

5.73.

5.74. .

Построить в прямоугольной системе координат Оху (O; i, j) фигуру,

определяемую данным уравне-нием, предварительно приведя его

к каноническому виду:

5.75.

5.76.

5.77.

5.78.

5.79.

5.80.

5.81.

5.82.

5.83.

5.84. .

Каждую из квадратичных форм исследовать на знакоопределённость

5.85.

5.86.

5.87.

5.88.

5.89.

5.90.

5.91.

5.92.

5.93. ;

5.94.

 

5.95. ;

5.96. .

 

 

 

<== предыдущая лекция | следующая лекция ==>
Цель проведения IPO | Кинетика химических и биохимических процессов.
Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.027 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал