Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Определение

Аналогия с сопротивлением

В отличие от резистора, электрическое сопротивление которого характеризует соотношение напряжения к току на нём, попытка применения термина электрическое сопротивление к реактивным элементам (катушка индуктивности и конденсатор) приводит к тому, что сопротивление идеальной катушки индуктивности стремится к нулю, а сопротивление идеального конденсатора — к бесконечности.

Сопротивление правильно описывает свойства катушки и конденсатора только на постоянном токе. В случае же переменного токасвойства реактивных элементов существенно иные: напряжение на катушке индуктивности и ток через конденсатор не равны нулю. Такое поведение сопротивлением уже не описывается, поскольку сопротивление предполагает постоянное, не зависящее от времени соотношение тока и напряжения, то есть отсутствие фазовых сдвигов тока и напряжения.

Было бы удобно иметь некоторую характеристику и для реактивных элементов, которая бы при любых условиях связывала ток и напряжение на них подобно сопротивлению. Такую характеристику можно ввести, если рассмотреть свойства реактивных элементов при гармонических воздействиях на них. В этом случае ток и напряжение оказываются связаны некоей стабильной константой (подобной в некотором смысле сопротивлению), которая и получила название электрический импеданс (или просто импеданс). При рассмотрении импеданса используется комплексное представление гармонических сигналов, поскольку именно оно позволяет одновременно учитывать и амплитудные, и фазовые характеристики сигналов и систем.

Определение

Импедансом называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого кдвухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник. При этом импеданс не должен зависеть отвремени: если время t в выражении для импеданса не сокращается, значит, для данного двухполюсника понятие импеданса неприменимо.

(1)

Здесь

j — мнимая единица;

— циклическая частота;

, — амплитуды напряжения и тока гармонического сигнала на частоте ;

, — фазы напряжения и тока гармонического сигнала на частоте ;

, — Комплексные амплитуды напряжения и тока гармонического сигнала на частоте ;

Исторически сложилось, что обозначение импеданса, комплексных амплитуд и других комплекснозначных функций частоты записывают как , а не . Такое обозначение показывает, что мы имеем дело с комплексными представлениями гармонических функций вида . Кроме того, над символом, обозначающим комплексный сигнал или комплексный импеданс, обычно ставят «домик» или точку: чтобы отличать от соответствующих действительных (некомплексных) величин.

164.Перекрестные наводки (параметры NEXT и FEXT)

При прохождении сигнала по витой паре создается электромагнитное поле, которое взаимодействует с сигналами, передаваемыми по соседним парам. В зависимости от того, осуществляется двунаправленная или однонаправленная передача сигнала, важно оценить влияние наведенной сигналом помехи на ближнем или на дальнем конце по отношению к источнику сигнала.
Однонаправленная передача сигнала *
Двунаправленная передача сигнала *

Поэтому влияние наведенного сигнала при передаче по одной паре на полезный сигнал, передаваемый по другой паре оценивают с помощью двух параметров:

* *Ослабление перекрестных наводок на ближнем конце -NEXT loss (Near End Crosstalk loss) в дальнейшем NEXT. Ослабление перекрестных наводок на ближнем от передатчика конце, NEXT – это параметр двунаправленной передачи, характеризующий затухание сигнала помехи, наведенного сигналом передатчика на смежную пару. Измеряется в децибелах (дБ). Чем выше значение NEXT, тем меньше влияние помех между двумя парами проводников. Тестирование проводится для двух концов кабельной цепи. Указывается наихудшее значение NEXT для каждой из 6 комбинаций пар. Измерение данного параметра требуется в соответствии с телекоммуникационным бюллетенем TSB-67 (Telecommunications System Bulletin).





* *Ослабление перекрестных наводок на дальнем конце -FEXT loss (Far End Crosstalk loss) в дальнейшем FEXT Современные высокоскоростные приложения используют одновременную передачу и прием информации по всем четырем парам. Помимо параметра NEXT в этом случае необходимо учитывать влияние помех на дальнем от передатчика конце линии. Ослабление перекрестных наводок на дальнем от передатчика конце, FEXT – это параметр однонаправленной передачи, характеризующий затухание сигнала помехи, наведенного сигналом передатчика на смежную пару. Измеряется в децибелах (дБ).Чем выше значения FEXT, тем меньший уровень имеет наводка в соседних парах и тем лучше качество передачи. Тестирование проводится для двух концов кабельной цепи.

Параметр FEXT в отличие от NEXT зависит от длины линии на всем ее протяжении. Две линии с использованием одних и тех же элементов, но разной длины, будут иметь разные значения FEXT. Поэтому нормируется параметр - равноуровневые перекрестные наводки на дальнем концеELFEXT (Equal-level Far End Crosstalk). Этот параметр выражается в децибелах (дБ). На экран сканера выводятся результаты рассчитанные, как разность между измеренными потерями FEXT и затуханием сигнала в возмущаемой паре:

ELFEXT = FEXT-A

где: FEXT – перекрестные наводки на дальнем от передатчика конце в дБ

A - затухание полезного сигнала в дБ

165. Jitter (флуктуация фазы, дребезжание сигнала)

Джи́ ттер (англ. jitter — дрожание) или фазовое дрожание цифрового сигнала данных[1] — нежелательные фазовые и/или частотные случайные отклонения передаваемого сигнала. Возникают вследствие нестабильности задающего генератора, изменений параметров линии передачи во времени и различной скорости распространения частотных составляющих одного и того же сигнала.

В цифровых системах проявляется в виде случайных быстрых (с частотой 10 Гц и более) изменений местоположения фронтов цифрового сигнала во времени, что приводит к рассинхронизации и, как следствие, искажению передаваемой информации. Например, если фронт имеет малую крутизну или «отстал» по времени, то цифровой сигнал как бы запаздывает, сдвигается относительно значащего момента времени — момента времени, в который происходит оценка сигнала.

166. Электромагнитная интерференция(EMI)

Высокие частоты, критические условия, большие значения силы тока, прохождение и ветвление сигнальных трасс — все это способствует возникновению самого опасного " врага" цифровой электроники — ЭМИ, электромагнитной интерференции (EMI — ElectroMagnetic Interference), величина которой прямо пропорциональна произведению действующего значения силы тока на квадрат частоты: EMI=kIAf2. На практике, при коммутациях, приближающихся к порогу сверхвысоких частот (начиная с 350 MГц), зависимость больше приближается к кубической.

Существует две формы ЭМИ: общая форма излучения (CMR — Common Mode Radiation) и дифференциальная форма излучения (DMR — Differential Mode Radiation). Первая характеризует локализованные шумы относительно " земли", вносимые трассами ввода/вывода, потому как длинная сигнальная линия ведет себя как антенна. Дифференциальная форма является результатом токовых петель, формирующихся между сигнальными трассами и трассами земли. Эти петли ведут себя как магнитные антенны и полностью зависят от собственной длины, общий уровень рассеиваемой энергии которых может быть достаточен для превышения требований, выдвигаемых комитетом стандартизации электронных компонентов (FCC — Federal Communication Commette).

 

167.Частота сигнала

Частота — это количество волн (количество повторений) сигнала, проходящих за одну секунду. Обычно частота измеряется в герцах (Гц) или килогерцах (кГц — 1000 Гц). Человеческому голосу обычно соответствуют частоты в диапазоне от 50 Гц до 5000 Гц, причем основная активность приходится на диапазон от 300 Гц до 3400 Гц (3, 1 кГц). Это означает, что в большинстве голосовых диалогов используется диапазон от 300 до 3400 звуковых колебаний в секунду. Итак, если кто-то говорит о вызове с полосой 3, 1 кГц, он имеет в виду специфический диапазон частот, который используется в аналоговой передаче голоса.

168. Связь между частотой электромагнитного сигнала и его длиной волны

Связь между длиной волны λ, частотой v и скоростью распростра­нения волны c. За один период ко­лебаний волна распространяется на расстояние λ. Поэтому ее скорость определяется формулой

C = λ / T

Так как период Т и частота v свя­заны соотношением T = 1 / v

то

c = λ v.

Скорость волны равна произведению длины волны на частоту колебаний.

169. Для каких соединений используется прямой кабель

Прямой кабель используется, для соединения компьютера с сетевым концентратором (хабом), перекрёстный кабель используется для соединения двух компьютеров напрямую без сетевого концентратора, или для соединения двух сетевых концентраторов (хабов). Кабель ролловер необходим для соединения компьютера с портом маршрутизатора.

170. Для каких соединений используется перекрещенный (инвертированный) кабель

Перекрещенный кабель может быть использован для соединения между собой «одинаковых» устройств, например, коммутатора с другим коммутатором или коммутатора с концентратором.

171. Однора́ нговая, децентрализо́ ванная или пи́ ринговая сеть — это оверлейная компьютерная сеть, основанная на равноправии участников. В такой сети отсутствуют выделенные серверы, а каждый узел (peer) является как клиентом, так и сервером. В отличие от архитектуры клиент-сервера, такая организация позволяет сохранять работоспособность сети при любом количестве и любом сочетании доступных узлов. Участниками сети являются пиры.

172. Достоинства одноранговых сетей: низкая стоимость и высокая надежность.

173. Недостатки одноранговых сетей: зависимость эффективности работы сети от количества станций; сложность управления сетью; сложность обеспечения защиты информации; трудности обновления и изменения программного обеспечения станций.

174. Оконечное оборудование (обработки) данных (ООД, ОООД) или терминальное оборудование (англ. DTE, Data Terminal Equipment) — оборудование, преобразующее пользовательскую информацию в данные для передачи по линии связи и осуществляющее обратное преобразование. Это обобщённое понятие, используемое для описания оконечного прибора пользователя или его части. ООД может являться источником информации, её получателем или тем и другим одновременно. ООД передаёт и/или принимает данные посредством использования оконечного оборудования линии связи и канала связи.

Оконечное оборудование линии связи (также аппаратура канала связи, АКС или аппаратура канала данных, АКД; англ. DCE = Data Circuit-terminating equipment Equipment, Data Communication Equipment или Data Carrier Equipment) — оборудование, преобразующее данные, сформированные оконечным оборудованием в сигнал для передачи по линии связи и осуществляющее обратное преобразование.

Примером оконечного оборудования линии связи может служить обычный телефонный модем.

175. Ethernet— пакетная технология передачи данных преимущественно локальных компьютерных сетей.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде — на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 1990-х годов, вытеснив такие устаревшие технологии, как Arcnet и Token ring.

176. Token Ring — технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» — протокол локальной сети, который находится на канальном уровне (DLL) модели OSI. Он использует специальный трёхбайтовый фрейм, названный маркером, который перемещается вокруг кольца. Владение маркером предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркерным доступом перемещаются в цикле.

177. FDDI (англ. Fiber Distributed Data Interface — Волоконно-оптический интерфейс передачи данных) — стандарт передачи данных в локальной сети, протянутой на расстоянии до 200 километров. Стандарт основан на протоколе Token Ring. Кроме большой территории, сеть FDDI способна поддерживать несколько тысяч пользователей.

В качестве среды передачи данных в FDDI рекомендуется использовать волоконно-оптический кабель, однако можно использовать и медный кабель, в таком случае используется сокращение CDDI (Copper Distributed Data Interface). В качестве топологии используется схема двойного кольца, при этом данные в кольцах циркулируют в разных направлениях. Одно кольцо считается основным, по нему передаётся информация в обычном состоянии; второе — вспомогательным, по нему данные передаются в случае обрыва на первом кольце. Для контроля за состоянием кольца используется сетевой маркер, как и в технологии Token Ring.

Поскольку такое дублирование повышает надёжность системы, данный стандарт с успехом применяется в магистральных каналах связи.

178. CSMA/CD (Carrier Sense Multiple Access/Collision Detect) — множественный доступ с прослушиванием несущей и обнаружением коллизий. Узел, готовый послать кадр, прослушивает линию. При отсутствии несущей он начинает передачу кадра, одновременно контролируя состояние линии. При обнаружении коллизии передача прекращается, и повторная попытка откладывается на случайное время. Коллизии — нормальное, хотя и не очень частое явление для CSMA/CD. Их частота связана с количеством и активностью подключенных узлов. Нормально коллизии могут начинаться в определенном временном окне кадра, запоздалые коллизии сигнализируют об аппаратных неполадках в кабеле или узлах. Метод эффективнее, чем CSMA/CA, но требует более сложных и дорогих схем цепей доступа. Применяется во многих сетевых архитектурах: Ethernet, EtherTalk (реализация Ethernet фирмы Apple), G-Net, IBM PC Network, AT& T Star LAN.

Приведем основные правила алгоритма CSMA/CD для предающей станции.

Передача кадра:

Станция, собравшаяся передавать, прослушивает среду. И передает, если среда свободна. В противном случае (т.е. если среда занята) переходит к шагу 2. При передаче нескольких кадров подряд станция выдерживает определенную паузу между посылками кадров - межкадровый интервал, причем после каждой такой паузы перед отправкой следующего кадра станция вновь прослушивает среду (возвращение на начало шага 1);

Если среда занята, станция продолжает прослушивать среду до тех пор, пока среда не станет свободной, и затем сразу же начинает передачу;

Каждая станция, ведущая передачу прослушивает среду, и в случае обнаружения коллизии, не прекращает сразу же передачу а сначала передает короткий специальный сигнал коллизии - jam-сигнал, информируя другие станции о коллизии, и прекращает передачу;

После передачи jam-сигнала станция замолкает и ждет некоторое произвольное время в соответствии с правилом бинарной экспоненциальной задержки и затем возвращаясь к шагу 1.

179. Институт инженеров по электротехнике и электронике — IEEE (англ. Institute of Electrical and Electronics Engineers) (I triple E — «Ай трипл и») — международная некоммерческая ассоциация специалистов в области техники, мировой лидер в области разработки стандартов по радиоэлектронике и эле

180. Ду́ плекс (лат. duplex — двухсторонний) — способ связи с использованием приёмопередающих устройств (модемов, сетевых карт, раций, телефонных аппаратов и др.).

Реализующее дуплексный способ связи устройство может в любой момент времени и передавать, и принимать информацию. Передача и прием ведутся устройством одновременно по двум физически разделённым каналам связи (по отдельным проводникам, на двух различных частотах и др. за исключением разделения во времени — поочередной передачи). Пример дуплексной связи — разговор двух человек (корреспондентов) по городскому телефону: каждый из говорящих в один момент времени может и говорить, и слушать своего корреспондента. Дуплексный способ связи иногда называют полнодуплексным (от англ. full-duplex); это синонимы.

181. Помимо дуплексной, выделяют полудуплексную и симплексную связь.

Реализующее полудуплексный (англ. half-duplex) способ связи устройство в один момент времени может либо передавать, либо принимать информацию. Как правило, такое устройство строится по трансиверной схеме. Пример полудуплексной связи — разговор по рации: каждый из корреспондентов в один момент времени либо говорит, либо слушает. Для обозначения конца передачи и перехода в режим приема корреспондент произносит слово «прием» (англ. «over»). Управление режимом работы радиостанции (прием или передача) может быть ручным (англ. Push-to-Talk (PTT) — кнопка или тангента переключения прием-передача, другое обозначение — MOX от англ. Manual control), голосовым (VOX — от англ. Voice control) или программным.

182. концевик trailer record оконечная часть блока данных, добавляемая к его инфрмационной части. В концевик блока, обычно, включаются контрольная сумма и символ его окончания.

183. SNMP (англ. Simple Network Management Protocol — простой протокол сетевого управления) — стандартный интернет-протокол для управления устройствами в IP-сетях на основе архитектур UDP/TCP. К поддерживающим SNMP устройствам относятся маршрутизаторы, коммутаторы, серверы, рабочие станции, принтеры, модемные стойки и другие. Протокол обычно используется в системах сетевого управления для контроля подключенных к сети устройств на предмет условий, которые требуют внимания администратора. SNMP определен Инженерным советом интернета (IETF) как компонент TCP/IP. Он состоит из набора стандартов для сетевого управления, включая протокол прикладного уровня, схему баз данных и набор объектов данных.

SNMP предоставляет данные для управления в виде переменных, описывающих конфигурацию управляемой системы. Эти переменные могут быть запрошены (а иногда и заданы) управляющими приложениями.

184.IEEE 802.3 — стандарты IEEE, касающиеся функционирования сетей. Семейство этих протоколов также называется Ethernet.

185.

186.Спектральное уплотнение каналов (Wavelength-division multiplexing, WDM, буквально мультиплексирование с разделением по длине волны) — технология, позволяющая одновременно передавать несколько информационных каналов по одному оптическому волокну на разных несущих частотах.

187. Коллизия

 

Этапы доступа к среде

Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.

Если среда свободна, то узел имеет право начать передачу кадра. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ. После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9, 6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна.

 

Возникновение коллизий

При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют защит от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации — методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.

Коллизия — это нормальная ситуация в работе сетей Ethernet. Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра. То есть коллизии — это следствие распределенного характера сети.

Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD). Для увеличения вероятности скорейшего обнаружения коллизии всеми станциями сети станция, которая обнаружила коллизию, прерывает передачу своего кадра (в произвольном месте, возможно, и не на границе байта) и усиливает ситуацию коллизии посылкой в сеть специальной последовательности из 32 бит, называемой jam-последовательностью.


Четкое распознавание коллизий всеми станциями сети являлось необходимым условием корректной работы сети ранних модификацийEthernet. В современных коммутируемых проводных сетях Ethernet к каждому сегменту линии передачи данных (кабелю витой пары или оптическому кабелю) подключается только два сетевых порта в режиме дуплексной передачи и возникновение коллизий принципиально невозможно.

 

188. Доме́ н колли́ зий (англ. Collision domain) — это часть сети ethernet, все узлы которой конкурируют за общую разделяемую среду передачи и, следовательно, каждый узел которой может создать коллизию с любым другим узлом этой части сети.

Другими словами - это сегмент сети, имеющий общий канальный уровень (Data Link layer)модели OSI, в котором передать фрейм может только один абонент одновременно. Задержка распространения фреймов между станциями, либо одновременное начало передачи вызывает возникновение коллизий, которые требуют специальной обработки и снижают производительность сети.

Чем больше узлов в таком сегменте — тем выше вероятность коллизий.

189. Для разделения домена коллизий применяются коммутаторы.

190. Широковеща́ тельный доме́ н (сегме́ нт) (broadcast domain) — логический участок компьютерной сети, в котором каждое устройство может передавать данные любому другому устройству непосредственно, без использования маршрутизатора. В общем случае данный термин применим ко второму (канальному) уровню сетевой модели OSI, однако иногда применяется и к третьему уровню с соответствующей оговоркой.

191. IPv4 использует 32-битные (четырёхбайтные) адреса, ограничивающие адресное пространство 4 294 967 296 (232) возможными уникальными адресами.

IPv6 использует 128-битные адреса.

192. Классы A, B, C, D, E.

193.

Класс Число сетей Число узлов
A 128 (-2) 16 777 216 (-2)

 

194.

Класс Число сетей Число узлов
B 16 384 65 536 (-2)

 

195.

 

Класс Число сетей Число узлов
C 2 097 152 256 (-2)

 

196 Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

, 197 Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.

198, 199, 200 В современной сети Интернет используется IP четвёртой версии, также известный как IPv4. В протоколе IP этой версии каждому узлу сети ставится в соответствие IP-адрес длиной 4 октета (4 байта). При этом компьютеры в подсетях объединяются общими начальными битами адреса. Количество этих бит, общее для данной подсети, называется маской подсети (ранее использовалось деление пространства адресов по классам — A, B, C; класс сети определялся диапазоном значений старшего октета и определял число адресуемых узлов в данной сети, сейчас используется бесклассовая адресация).

201, 202, 203, 204, 205. Существует 5 классов IP-адресов – A, B, C, D, E. Принадлежность IP-адреса к тому или иному классу определяется значением первого октета (W). Ниже показано соответствие значений первого октета и классов адресов.

Класс IP-адреса A B C D E
Диапазон первого октета 1-126 128-191 192-223 224-239 240-247

 

 

206. Если узел имеет частный IP-адрес, по которому в соответствии с общими правилами маршрутизации нельзя получить доступ со стороны некоторых других узлов, т.е. при выходе во внешнюю сеть стоит Firewall или иное устройство, выполняющее преобразование адресов (NAT). Открытый - все норм

207. 10.0.0.0 - 10.255.255.255 (10/8 prefix)
208 172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
209 192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

210. NAT (от англ. Network Address Translation — «преобразование сетевых адресов») — это механизм в сетях TCP/IP, позволяющий преобразовывать IP-адреса транзитныхпакетов.

Статический NAT — Отображение незарегистрированного IP-адреса на зарегистрированный IP-адрес на основании один к одному. Особенно полезно, когда устройство должно быть доступным снаружи сети.

Динамический NAT — Отображает незарегистрированный IP-адрес на зарегистрированный адрес от группы зарегистрированных IP-адресов. Динамический NAT также устанавливает непосредственное отображение между незарегистрированным и зарегистрированным адресом, но отображение может меняться в зависимости от зарегистрированного адреса, доступного в пуле адресов, во время коммуникации.

Перегруженный NAT (NAPT, NAT Overload, PAT, маскарадинг) — форма динамического NAT, который отображает несколько незарегистрированных адресов в единственный зарегистрированный IP-адрес, используя различные порты. Известен также как PAT (Port Address Translation). При перегрузке каждый компьютер в частной сети транслируется в тот же самый адрес, но с различным номером порта.

211. Статическая - прописана ручками админа, динамическая адресация - устанавливается протокалами RIP, IEGRP и т.д

212. Маршрутиза́ тор (проф. жарг. роутер (от англ. router /ˈ ɹ u: tə (ɹ)/ или /ˈ ɹ aʊ tə ɹ /[1], /ˈ ɹ aʊ tɚ /), раутер или рутер) — специализированный сетевойкомпьютер, имеющий минимум один сетевой интерфейс и пересылающий пакеты данных между различными сегментами сети, связывающий разнородные сети различных архитектур, принимающий решения о пересылке на основании информации о топологии сети и определённых правил, заданных администратором.

213. см. 214

214. Таблица маршрутизации — электронная таблица (файл) или база данных, которая хранится на маршрутизаторе или сетевом компьютере, которая описывает соответствие между адресами назначения и интерфейсами, через которые следует отправить пакет данных до следующего маршрутизатора. Является простейшей формой правил маршрутизации.

Таблица маршрутизации обычно содержит:

адрес сети или узла назначения, либо указание, что маршрут является маршрутом по умолчанию

маску сети назначения (для IPv4-сетей маска /32 (255.255.255.255) позволяет указать единичный узел сети)

шлюз, обозначающий адрес маршрутизатора в сети, на который необходимо отправить пакет, следующий до указанного адреса назначения

интерфейс (в зависимости от системы это может быть порядковый номер, GUID или символьное имя устройства)

метрику — числовой показатель, задающий предпочтительность маршрута. Чем меньше число, тем более предпочтителен маршрут (интуитивно представляется какрасстояние).

215. Автономная система (AS) в интернете — это система IP-сетей и маршрутизаторов, управляемых одним или несколькими операторами, имеющими единую политику маршрутизации с Интернетом. Номер выдается по протоколу BGP Border Gateway Protocol..

Многоинтерфейсная (multihomed) AS — это AS, которая имеет соединения с более чем одним Интернет-провайдером. Это позволяет данной AS оставаться подключенной к Интернету в случае выхода из строя соединения с одним из Интернет-провайдеров. Кроме того, этот тип AS не разрешает транзитный трафик от одного Интернет-провайдера к другому.

Ограниченная (stub) AS — это AS, имеющая единственное подключение к одной внешней автономной системе. Это расценивается как бесполезное использование номера AS, так как сеть размещается полностью под одним Интернет-провайдером и, следовательно, не нуждается в уникальной идентификации.

Транзитная (transit) AS — это AS, которая пропускает через себя транзитный трафик сетей, подключенных к ней. Таким образом, сеть A может использовать транзитную AS для связи с сетью B.

216. Маска подсети. Варианты. Примеры.

В терминологии сетей TCP/IP маской подсети или маской сети называется битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. Например, узел с IP-адресом 12.34.56.78 и маской подсети 255.255.255.0 находится в сети 12.34.56.0/24 с длиной префикса 24 бита. В случае адресации IPv6 адрес 2001: 0DB8: 1: 0: 6C1F: A78A: 3CB5: 1ADD с длиной префикса 32 бита (/32) находится в сети 2001: 0DB8:: /32.

217. Бесклассовая адресация (англ. Classless Inter-Domain Routing, англ. CIDR) — метод IP-адресации, позволяющий гибко управлять пространством IP-адресов, не используя жёсткие рамки классовой адресации. Использование этого метода позволяет экономно использовать ограниченный ресурс IP-адресов, поскольку возможно применение различных масок подсетей к различным подсетям

пример - 192.0.2.32/27

218. hop в протоколе RIP. - переход от одного нода(машинки) к другому

219. смысл скользящего окна Существует еще одна проблема при пересылке данных по каналам TCP, которая называется синдром узкого окна (silly window syndrome; Clark, 1982). Такого рода проблема возникает в том случае, когда данные поступают отправителю крупными блоками, а интерактивное приложение адресата считывает информацию побайтно. Предположим, что в исходный момент времени буфер адресата полон и передающая сторона знает об этом (window=0). Интерактивное приложение считывает очередной октет из TCP-потока, при этом TCP-агент адресата поcылает уведомление отправителю, разрешающее ему послать один байт. Этот байт будет послан и снова заполнит до краев буфер получателя, что вызовет отправку ACK со значением window=0. Этот процесс может продолжаться сколь угодно долго, понижая коэффициент использования канала ниже паровозного уровня.

Кларк предложил не посылать уведомление о ненулевом значении ширины окна при считывании одного байта, а лишь после освобождения достаточно большого пространства в буфере. Например, когда адресат готов принять MSS байтов или когда буфер наполовину пуст.

Предполагается, что получатель пакета практически всегда посылает отправителю пакет-отклик. Отправитель может послать очередной пакет, не дожидаясь получения подтверждения для предшествующего. Таким образом, может быть послано k пакетов, прежде чем будет получен отклик на первый пакет (протокол " скользящего окна").

220. Протокол передачи данных — набор соглашений интерфейса логического уровня, которые определяют обмен данными между различными программами. Эти соглашения задают единообразный способ передачи сообщений и обработки ошибок при взаимодействии программного обеспечения разнесённой в пространстве аппаратуры, соединённой тем или иным интерфейсом.

<== предыдущая лекция | следующая лекция ==>
Рекомендуемые поля допусков при размерах от 1 до 500 мм. | Малышей от 1,5 до 4 лет в группу
Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.025 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал