Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Что дальше
Итак, в мире пока распространены три типа ГМ-растений, производство которых поставлено на коммерческую основу крупными компаниями. Над чем же сейчас работают в лабораториях? Это в первую очередь достижение устойчивости растений к ряду фак- торов, изменение «архитектуры» (строения) растений, изменение времени цветения и созревания, создание растений, дающих новые белки, масла, питательные вещества, модифицированный крахмал. Методами классической селекции добиться таких свойств можно было бы лишь в далеком будущем. Чтобы выделить «ответственные» за эти свойства гены и модифицировать их в требуемом направлении, нужны очень сильная фундаментальная наука и доступ к мировым коллекциям семян различных растений. Даже в такой сложной системе, как фотосинтез, можно осуществить изменение или перестановку определенных генов, влияющих на характеристики процесса. Уже есть аргументы в пользу того, что возможно более эффективное поглощение углекислого газа растениями, в результате чего повысится и эффективность фотосинтеза. На этом пути еще предстоят фундаментальные исследования (и, хочется верить, — открытия). Есть немало и других фундаментальных проблем, например, фиксация азота растениями (мы только начинаем понимать, почему природа создает для этого столь сложные структуры). Большое значение приобретают исследования соле- и засухоустойчивости. Почему некоторые растения неплохо себя чувствуют в таких условиях, а другие погибают? Ныне мы уже понимаем многое в физиологии и механизмах засухоустойчивости. Существуют специфические метаболические пути, которые открываются в клетках растений, находящихся на солнце, так что их метаболизм отличается от метаболизма в затененных клетках. Уже есть представления о механизмах передачи сигналов в процессах, контролирующих устойчивость к засухе, и факторах, влияющих на эту передачу. Сегодня уже ясно, что, регулируя концентрацию ионов натрия в вакуолях, можно получить засухоустойчивые растения. Немало растений при засухе полностью прекращают жизнедеятельность, но после дождя или полива возрождаются. Многие домашние и садовые растения удается оживить после высыхания. Обычно это можно проделать только раз, но в природе есть растения, которые «оживают» многократно. Существует и другой подход к достижению засухоустойчивости. Это могло бы быть использование растений типа сорго, адаптированных к засухе. К сожалению, их продуктивность невысока. Но рис и кукуруза немногим отличаются от сорго, так как произошли от общего предка. Располагая геномами риса, пшеницы и сорго, а также образцами сорго из банков семян, можно было бы получить засухоустойчивые и продуктивные культуры. I
|