Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Оптоволоконные кабели






Оптоволоконный (он же волоконно-оптический) кабель — это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля (рис. 2.3), только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции - стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае мы имеем дело с режимом так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется, однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Рис. 2.3. Структура оптоволоконного кабеля

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам этот сигнал принципиально не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как это требует нарушения целостности кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, что несравнимо выше, чем у любых электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля. Однако в данном случае необходимо применение специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет около 5 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, он просто не имеет конкурентов.

Однако оптоволоконный кабель имеет и некоторые недостатки.

Самый главный из них - высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа.

Хотя оптоволоконные кабели и допускают разветвление сигналов (для этого выпускаются специальные разветвители на 2-8 каналов), как правило, их используют для передачи данных только в одном направлении, между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети.

Оптоволоконный кабель менее прочен, чем электрический, и менее гибкий (типичная величина допустимого радиуса изгиба составляет около 10—20 см). Чувствителен он и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Чувствителен он также к резким перепадам температуры, в результате которых стекловолокно может треснуть. В настоящее время выпускаются оптические кабели из радиационностойкого стекла (стоят они, естественно, дороже).

Оптоволоконные кабели чувствительны также к механическим воздействиям (удары, ультразвук) — так называемый микрофонный эффект. Для его уменьшения используют мягкие звукопоглощающие оболочки.

Применяют оптоволоконный кабель только в сетях с топологией «звезда» и «кольцо». Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели всех типов или, во всяком случае, сильно потеснит их. Запасы меди на планете истощаются, а сырья для производства стекла более чем достаточно.

Существуют два различных типа оптоволоконных кабелей:

· многомодовый, или мультимодовый, кабель, более дешевый, но менее качественный;

· одномодовый кабель, более дорогой, но имеющий лучшие характеристики.

Основные различия между этими типами связаны с разным режимам прохождения световых лучей в кабеле.

В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего все они достигают приемника одновременно, и форма сигнала практически не искажается. Одномодовый кабель имеет диаметр центрального волокна около 1, 3 мкм и передает свет только с такой же длиной волны (1, 3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Такие приемопередатчики пока еще сравнительно дороги и не слишком долговечны. Однако в перспективе одномодовый кабель должен стать основным благодаря своим прекрасным характеристикам.

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62, 5 мкм, а диаметр внешней оболочки - 125 мкм (это иногда обозначается как 62, 5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0, 85 мкм. Допустимая длина кабеля достигает 2-5 км. В настоящее время многомодовый кабель - основной тип оптоволоконного кабеля, так как он дешевле и доступнее.

Задержка распространения сигнала в оптоволоконном кабеле не сильно отличается от задержки в электрических кабелях. Типичная величина задержки для наиболее распространенных кабелей составляет около 4-5 нс/м.

Сетевой адаптер (Network Interface Card, NIC) - это периферийное устройство компьютера, непосредственно взаимодействующее со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами. Это устройство решает задачи надежного обмена двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Как и любой контроллер компьютера, сетевой адаптер работает под управлением драйвера операционной системы и распределение функций между сетевым адаптером и драйвером может изменяться от реализации к реализации.

В первых локальных сетях сетевой адаптер с сегментом коаксиального кабеля представлял собой весь спектр коммуникационного оборудования, с помощью которого организовывалось взаимодействие компьютеров. Сетевой адаптер компьютера-отправи-теля непосредственно по кабелю взаимодействовал с сетевым адаптером компьютера-получателя. В большинстве современных стандартов для локальных сетей предполагается, что между сетевыми адаптерами взаимодействующих компьютеров устанавливается специальное коммуникационное устройство (концентратор, мост, коммутатор или маршрутизатор), которое берет на себя некоторые функции по управлению потоком данных.

Сетевой адаптер обычно выполняет следующие функции:

· Оформление передаваемой информации в виде кадра определенного формата. Кадр включает несколько служебных полей, среди которых имеется адрес компьютера назначения и контрольная сумма кадра, по которой сетевой адаптер станции назначения делает вывод о корректности доставленной по сети информации.

· Получение доступа к среде передачи данных. В локальных сетях в основном применяются разделяемые между группой компьютеров каналы связи (общая шина, кольцо), доступ к которым предоставляется по специальному алгоритму (наиболее часто применяются метод случайного доступа или метод с передачей маркера доступа по кольцу). В последних стандартах и технологиях локальных сетей наметился переход от использования разделяемой среды передачи данных к использованию индивидуальных каналов связей компьютера с коммуникационными устройствами сети, как это всегда делалось в телефонных сетях, где телефонный аппарат связан с коммутатором АТС индивидуальной линией связи. Технологиями, использующими индивидуальные линии связи, являются 100VG-AnyLAN, ATM и коммутирующие модификации традиционных технологий - switching Ethernet, switching Token Ring и switching FDDI. При использовании индивидуальных линий связи в функции сетевого адаптера часто входит установление соединения с коммутатором сети.

· Кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме. Кодирование должно обеспечить передачу исходной информацию по линиям связи с определенной полосой пропускания и определенным уровнем помех таким образом, чтобы принимающая сторона смогла распознать с высокой степенью вероятности посланную информацию. Так как в локальных сетях используются широкополосные кабели, то сетевые адаптеры не используют модуляцию сигнала, необходимую для передачи дискретной информации по узкополосным линиям связи (например, телефонным каналам тональной частоты), а передают данные с помощью импульсных сигналов. Представление же двоичных 1 и 0 может быть различным.

· Преобразование информации из параллельной формы в последовательную и обратно. Эта операция связана с тем, что для упрощения проблемы синхронизации сигналов и удешевления линий связи в вычислительных сетях информация передается в последовательной форме, бит за битом, а не побайтно, как внутри компьютера.

· Синхронизация битов, байтов и кадров. Для устойчивого приема передаваемой информации необходимо поддержание постоянного синхронизма приемника и передатчика информации. Сетевой адаптер использует для решения этой задачи специальные методы кодирования, не использующие дополнительной шины с тактовыми синхросигналами. Эти методы обеспечивают периодическое изменение состояния передаваемого сигнала, которое используется тактовым генератором приемника для подстройки синхронизма. Кроме синхронизации на уровне битов, сетевой адаптер решает задачу синхронизации и на уровне байтов, и на уровне кадров.

Сетевые адаптеры различаются по типу и разрядности используемой в компьютере внутренней шины данных - ISA, EISA, PCI, MCA.

Сетевые адаптеры различаются также по типу принятой в сети сетевой технологии - Ethernet, Token Ring, FDDI и т.п. Как правило, конкретная модель сетевого адаптера работает по определенной сетевой технологии (например, Ethernet). В связи с тем, что для каждой технологии сейчас имеется возможность использования различных сред передачи данных (тот же Ethernet поддерживает коаксиальный кабель, неэкранированную витую пару и оптоволоконный кабель), сетевой адаптер может поддерживать как одну, так и одновременно несколько сред. В случае, когда сетевой адаптер поддерживает только одну среду передачи данных, а необходимо использовать другую, применяются трансиверы и конверторы.

Трансивер (приемопередатчик, trans mitter+re ceiver) - это часть сетевого адаптера, его оконечное устройство, выходящее на кабель. В первом стандарте Ethernet, работающем на толстом коаксиале, трансивер располагался непосредственно на кабеле и связывался с остальной частью адаптера, располагавшейся внутри компьютера, с помощью интерфейса AUI (attachment unit interface). В других вариантах Ethernet'а оказалось удобным выпускать сетевые адаптеры (да и другие коммуникационные устройства) с портом AUI, к которому можно присоединить трансивер для требуемой среды.

Вместо подбора подходящего трансивера можно использовать конвертор, который может согласовать выход приемопередатчика, предназначенного для одной среды, с другой средой передачи данных (например, выход на витую пару преобразуется в выход на коаксиальный кабель).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал