![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основные типы, области применения и материалы тонкопленочных покрытий
В качестве подложки могут использоваться практические любые твердые материалы: полупроводники, металлы, сплавы, полимеры, стекло, керамика, камень, дерево, ткани, порошковые материалы и т.д. Технологический маршрут нанесения тонкопленочных покрытий состоит из следующих операций: 1) проверки работоспособности оборудования (наличия рабочих материалов, газов, герметичности вакуумных камер); 2) загрузки подложки из атмосферы в вакуум и ее перемещения в рабочую (технологическую) камеру; 3) подготовки поверхности подложки (нагрева, очистки, активации); 4) выхода на заданные режимы работы источников нанесения тонкопленочного покрытия; 5) напуска рабочего газа (если необходимо); 6) осаждения тонкой пленки; 7) стабилизации и контроля параметров пленки (нагрев, отжиг и др.); 8) выгрузки обработанных изделий. Осаждение тонких пленок в вакууме включает три этапа: генерацию атомов или молекул, перенос их к подложке и рост пленки на поверхности подложки. Состав и структура пленки зависят от исходных материалов, метода и режимов нанесения, обеспечивающих необходимый энергомассоперенос материала. В Табл.6 представлена классификация методов нанесения тонких пленок в вакууме, в основу которой положены физические принципы генерации и переноса потоков атомов или молекул, способы реализации этих принципов и конструктивное исполнение. Основными технологическими режимами нанесения тонких пленок в вакууме являются: давление в рабочей камере pвак (остаточных газов - вакуума) и pр.г. (рабочего газа - инертного, химически активного, смеси газов), Па; температура подложки (изделия) Tп, К; максимальная скорость осаждения пленки Vоmax, мкм/с; энергия осаждающихся атомов, молекул, ионов и кластеров E, эВ; доля ионизированных частиц Kи. В приведенных в Табл.6 формулах использованы также следующие обозначения: pнас - давление насыщенного пара, Па; M - молекулярная масса испаряемого материала, кг/кмоль; Tисп - температура испарения, К; Fи, р - площадь поверхности испарения или распыления, м2; d - расстояние от источника до подложки, м; r - плотность осаждаемого материала, кг/м3; jи - плотность ионного тока, А/м2; S - коэффициент распыления, атом/ион; qдоп - допустимая плотность потока энергии на поверхность конденсации, Вт/см2; Eопт - оптимальная энергия осаждающихся частиц, эВ; pi, ri и Mi - соответственно парциальное давление (Па), плотность (кг/м3) и молекулярная масса (кг/кмоль) осаждающихся из газовой смеси компонентов n. Условные обозначения методов приняты с целью использования их в базах данных и автоматизированных экспертных системах, необходимых для повышения уровня информационного обеспечения разработок и исследований в области технологии тонких пленок. Осаждение тонких пленок в вакууме методом термического испарения D0 осуществляется путем подведения к веществу энергии резистивным D00 (прямым D000 - D002 и косвенным D003) и высокочастотным D01 нагревом, электронной бомбардировкой D02, электронно-лучевым нагревом D03 и нагревом с помощью лазерного излучения D04. При температуре вещества равной, либо превышающей Tисп частицы покидают испаритель, переносятся в вакууме на подложку и конденсируются на ее поверхности в виде тонкой пленки. Если помимо физических процессов, происходящих во время осаждения тонкой пленки, при напуске в рабочую камеру реактивного газа, в пространстве между источником и подложкой или на поверхности подложки протекает химическая реакция, то соответствующий метод называется реактивным D___R. Например, для получения пленок нитрида титана 2Ti + N2 = 2TiN.
|