![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Поверхностная закалка деталей машин
Поверхностная закалка является наиболее распространенным и наиболее простым способом упрочнения самых различных деталей машин. Поверхностной закалке подвергаются детали из средне- и высокоуглеродистых конструкционных сталей и чугунов. Сущность физических явлений, протекающих при процессе закалки, известна из курса «Металловедения и термической обработки» и здесь не рассматривается. Наибольшее внимание уделено технологическим приемам и способам. Поверхностная закалка с нагревом газовым пламенем Поверхностная закалка с нагревом газовым пламенем является - старейшим процессом упрочнения, который в настоящее время начинает терять свое значение в связи с вредностью и трудоемкостью. Поверхность детали нагревается специальными горелками до закалочной температуры на глубину 1—6 мм, и производится немедленное резкое охлаждение. При поверхностной закалке упрочнению подвергаются только отдельные участки поверхности деталей машин, например, зубья зубчатых колес, ходовые дорожки крановых блоков, шейки валов, верхняя поверхность головки рельса и т. д. Твердость поверхности после закалки зависит от качества упрочняемого материала и режима упрочнения. В поверхностном слое при правильном проведении технологического процесса образуется мелкоигольчатый мартенсит, а в переходной зоне — троостит, сорбит, перлит. Под влиянием структурных изменений в поверхностном слое возникают большие остаточные напряжения сжатия. Эти свойства обеспечивают после термообработки высокую износостойкость и усталостную прочность деталей машин. На практике применяют три метода пламенной поверхностной закалки: циклический, непрерывный и комбинированный. Технологический процесс пламенной закалки включает в себя: а) Выбор режима обработки: скорости перемещения пламени, расход газа, соотношение газа и кислорода, подачи и т. д. б) Подготовка деталей к обработке. в) Обработка деталей (закалка). г) Обработка деталей после закалки. д) Контроль. Режимы обработки определяются следующим образом: а) Выбирается способ закалки и тип горелки из формы и размеров деталей. б) По графикам, специальным справочным данным определяют расход газа и устанавливают скорость перемещения горелки. в) Глубину закалки и твердость поверхности регулируют расходом газа, интенсивностью охлаждения, скоростью перемещения пламени и соотношением газов в смеси. г) Выбирается тип оборудования. Подготовка деталей сводится к следующему: а) Осуществляется предварительная термообработка для получения мелкозернистой структуры. б) Поверхность детали должна быть без трещин, царапин и особенно наклепа. Это обеспечивается предварительной обработкой После закалки производится низкий отпуск при t° = 180 — 120°С в масляных ваннах с электронагревателем. После отпуска производится шлифование и доводка. Пламенная закалка имеет особые преимущества при закалке крупных деталей и в единичном производстве. Поверхностная закалка токами высокой частоты Закалке токами высокой частоты подвергают стали с содержанием углерода не менее 0, 3 — 0, 4%. На основании обработки результатов ряда исследований для сталей с содержанием углерода 0, 15—0, 75% установлена следующая эмпирическая связь между содержанием углерода и ожидаемой твердостью HRC = 20 + (2C - l, 3C2). После закалки токами высокой частоты (ТВЧ) для снятия внутренних напряжений производится отпуск, который нередко и осуществляется на этом же аппарате. Нагревающим устройством является индуктор, представляющий собой специальную катушку, внутренняя часть которой облегает нагреваемую деталь. Индуктор также является и спрейером. Подаваемая из него вода в виде душа охлаждает деталь и охлаждает индуктор. Источниками питания аппаратов ТВЧ являются машинные генераторы. Мощность генератора зависит от площади, подлежащей закаливанию. Большие поверхности (более 300 см2) нагревают не сразу, а последовательно. Свойства поверхностного слоя, получаемые закалкой ТВЧ, во многом зависят от предварительной обработки, подготавливающей структуру. Часто рекомендуется в качестве предварительной обработки проводить улучшение, измельчающее структуру металла. Поверхностная закалка ТВЧ применяется в основном для повышения износостойкости и усталостной прочности деталей машин. По экспериментальным данным повышение усталостной прочности в ряде случаев составляет от 40 до 100%. Так же сильно повышается и износостойкость. Закалка ТВЧ по сравнению с пламенной имеет большое преимущество по производительности, (в 2 — 6 раз). Однако ее возможно широко применять только в массовом и крупносерийном производстве. Цементация Во многих случаях, когда необходимо получить высокую поверхностную твердость при сохранении общих высоких показателей сопротивления изгибу детали подвергаются процессу цементации с последующей закалкой и отпуском. Этот процесс подробно освещен в курсе «Металловедение», поэтому здесь приводятся только краткие сведения с целью напоминания. Цементированию подвергаются детали, которые, как правило, изготавливаются из сталей, содержащих не более 0, 2 — 0, 3% С. Сущность процесса сводится к следующему. Поверхностный слой детали с помощью специальных технологических приемов и устройств насыщается углеродом. Обогащенный углеродом поверхностный слой хорошо воспринимает закалку и отпуск, в результате чего поверхностная твердость цементированной детали резко повышается. Повышается износостойкость и усталостная прочность. Другие методы обработки Рассмотрим кратко другие методы химико-термического упрочнения поверхностных слоев деталей машин. а) Азотирование. Азотирование применяют для получения высокой твердости, повышения сопротивления изнашиванию и усталостным разрушениям, для повышения коррозионной стойкости. Азотированию обычно подвергаются стали марок 10, 20, 30, 40, ЗОХ, МОХ, 38ХМОА, 18ХНВА и т.д. Установка для азотирования состоит из муфельной или шахтной печи, аппаратуры для подачи аммиака и контроля за ходом процесса. В печь загружают детали, подлежащие азотированию, включают аппаратуру, подающую аммиак, и нагревают до температуры 480—500°С. Аммиак при высокой температуре разлагается, выделяя атомарный азот, который и диффундирует в металл. При температуре 500°С за каждые 10 часов деталь насыщается на глубину 0, 1 мм. Атомарный азот, диффундируя в поверхность стальных деталей, образует с железом и легирующими элементами (алюминием, хромом, молибденом) химические соединения — нитриды, которые либо внедряются в зерна стали в виде мелких частиц, обеспечивая высокую твердость стали, либо образуют сетку по границам зерен, либо образуют сплошные белые полоски повышенной хрупкости. В результате азотирования можно получить твердость в 1, 5 — 2 раза большую, чем при цементации и закалке. Кроме того, полученная твердость сохраняется при температуре 500 — 600°С. Организация азотирования довольно сложна, поэтому процесс этот применяется в массовом и крупносерийном производстве, либо там, где подобный вид повышения параметров прочности является обязательным по условиям работы изделия. б) Цианирование. Цианирование занимает промежуточное положение между цементацией и азотированием. В результате этого процесса поверхность изделия насыщается углеродом и азотом. Существует два вида цианирования — жидкое и газовое (называемое также нитроцементацией). Жидкое цианирование осуществляют в ваннах с наружным или внутренним (электродным) обогревом. Ванна заполняется расплавом следующего химического состава: цианистого натрия — 10%; поваренной соли — 30%; хлористого бария — 60%. Цианирование ведется при температуре 800 — 830 и 900 —930°С. По температурному режиму цианирование подразделяется на низкотемпературное (500 — 700°С) и высокотемпературное (750 — 980°С). При температурах 900 — 930°С глубина цианированного слоя достигает 2—2, 5 мм, а при температурах 750 — 830сС — не более 1, 0 мм. Длительность процесса цианирования колеблется от 1 до 6 часов. После цианирования детали подвергаются закалке (иногда непосредственно в ванне). Газовое цианирование производят смесью цементирующего газа и аммиака в отношениях 4: 1 в тех же печах и на той же аппаратуре, что и при газовой цементации. Цианирование существенно повышает усталостную прочность деталей машин, особенно зубчатых колес автомобилей. Для сталей со средним содержанием углерода (40Х, 35Х, 45Х и др.) целесообразно применять газовое цианирование. Все остальные материалы лучше подвергать жидкому цианированию. Необходимо отметить, что цианирование в ваннах требует специальных защитных мер для охраны здоровья рабочих. в) Алитирование. Алитированием называется процесс насыщения поверхностного слоя деталей алюминием. Взаимодействие железа с алюминием приводит к образованию в поверхностном слое твердых растворов алюминия в железе. Алитированию подвергаются детали, которые работают при повышенных температурах. Детали, подлежащие алитированию, изготавливаются из обычных конструкционных сталей. После алитирования их срок службы повышается настолько, что они с успехом конкурируют с жаропрочными сплавами. Процесс алитирования включает в себя следующую последовательность операций: 1) подготовка поверхности, 2) напыление алюминиевого слоя, 3) обмазка, 4) отжиг. При подготовке надо получить поверхность без окисных пленок, масла и грязи. Обмазка наносится поверх напыленного алюминия сплошным слоем в в два-три приема. Рекомендуется следующий состав обмазки: 50% графита, 18% огнеупорной глины, 30% кварцевого песка и 2% хлористого аммиака. После нанесения обмазки производится отжиг. Начальная температура —600 — 650°С. Затем следует быстрый разогрев до 900 — 950°С с выдержкой 2, 5 — 3 часа. После этого производится охлаждение до 500 — 550° С вместе с печью, а затем и на воздухе. В процессе отжига в подслое обмазки алюминий плавится и происходит термодиффузионное насыщение поверхности детали. г) Диффузионное хромирование. Диффузионное хромирование осуществляется при разложении паров хлорида хрома СгС12 с выделением металлического атомарного хрома, который при температуре 950 — 1050° диффундирует в поверхность детали, образуя α и γ - растворы и химсоединения типа FeCr. Технологически хромирование производится либо в порошках, либо в газовой среде. При диффузионном хромировании в порошках детали помещаются в контейнер, который заполняется смесью порошков феррохрома (или хрома) окиси алюминия, хлористого алюминия. Контейнер нагревают до температуры 1000 — 1100°С в течение 5—8 часов. Диффузионное хромирование повышает износостойкость деталей машин и коррозионную стойкость. Наряду с рассмотренными методами химико-термического упрочения, в последнее время находят применение силицирование, сульфидирование, сульфоцианирование и ряд других. В данном курсе за недостатком места они не рассматриваются. ЛИТЕРАТУРА Елизаветин М. А., Сатель Э. А. «Технологические способы повышения долговечности машин». «Машиностроение», 1969 г. Москва.
|