Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Коррозия подземных трубопроводов и коррозионная защита






Коррозия подземных трубопроводов является одной из основных причин их разгерметизации вследствие образования каверн, трещин и разрывов.

Рисунок 1

Коррозия металлов, т.е. их окисление — это переход атомов металла из свободного состояния в химически связанное, ионное. При этом атомы металла теряют свои электроны, а окислители их принимают.

На подземном трубопроводе за счет неоднородности металла трубы и гетерогенности грунта (как по физическим свойствам, таки по химическому составу) возникают участки с различным электродным потенциалом, что обуславливает образование гальванических коррозионных элементов (рис. 1 и рис. 2).

Важнейшими видами коррозии являются: поверхностная (сплошная по всей поверхности), местная в виде раковин, язвенная (питтинговая), щелевая, межкристаллитная и усталостное коррозионное растрескивание. Два последних вида коррозии представляют наибольшую опасность для подземных трубопроводов.

Поверхностная коррозия лишь в редких случаях приводит к повреждениям, тогда как по причине язвенной коррозии происходит наибольшее число повреждений.

Коррозионная ситуация, в которой находится металлический трубопровод в грунте, зависит от большого количества факторов, связанных с грунтовыми и климатическими условиями, особенностями трассы, условиями эксплуатации. К таким факторам относятся:

· влажность грунта,

· химический состав грунта,

· кислотность грунтового электролита,

· структура грунта,

· температура транспортируемого газа

Рисунок 2

Наиболее сильным отрицательным проявлением блуждающих токов в земле, вызываемое электрифицированным рельсовым транспортом постоянного тока, является электрокоррозионное разрушение трубопроводов. Иллюстрация возникновения блуждающих токов и влияния их на трубопровод приведена на рис. 3.

Рисунок 3. Схема возникновения блуждающих токов на железной дороге с электрической тягой на постоянном токе

Схема возникновения блуждающих токов на железной дороге с электрической тягой на постоянном токе
1 - тяговая подстанция,
2 - нагрузка,
3 - контактная сеть,
4 - ходовая рельсовая сеть,
5 - трубопровод Iкс — ток в контактной сети, Iрс — ток в ходовой рельсовой сети, Iн — натекающий ток на трубопровод, Iс — стекающий ток с трубопровода.

Интенсивность блуждающих токов и их влияние на подземные трубопроводы зависит от таких факторов, как:

· переходное сопротивление рельс-земля;

· продольное сопротивление ходовых рельсов;

· количество поездов на перегоне;

· расстояние между тяговыми подстанциями;

· потребление тока электропоездами;

· число и сечение отсасывающих линий;

· удельное электрическое сопротивление грунта;

· расстояние и расположение трубопровода относительно пути;

· переходное и продольное сопротивление трубопровода.

Следует отметить, что блуждающие токи в катодных зонах оказывают защитное воздействие на сооружение, поэтому в таких местах катодная защита трубопровода может быть осуществлена без больших капитальных затрат.

Методы защиты подземных металлических трубопроводов от коррозии подразделяются на пассивные и активные.

Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий (битум, каменноугольный пек, полимерные ленты, эпоксидные смолы и пр).

На практике не удается добиться полной оплошности изоляционного покрытия. Различные виды покрытия имеют различную диффузионную проницаемость и поэтому обеспечивают различную изоляцию трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины и другие дефекты. Наиболее опасными являются сквозные повреждения защитного покрытия, где, практически, и протекает грунтовая коррозия.

Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита. Такая защита носит название комплексной защиты.

Активный метод защиты от коррозии осуществляется путем катодной поляризации и основан на снижении скорости растворения металла по мере смещения его потенциала коррозии в область более отрицательных значений, чем естественный потенциал.

В 1928 году Роберт Кун опытным путем установил, что величина потенциала катодной защиты стали составляет минус 0, 85 Вольт относительно медносульфатного электрода сравнения. Так как естественный потенциал стали в грунте примерно равен − 0, 55...-0, 6 Вольта, то для осуществления катодной защиты необходимо сместить потенциал коррозии на 0, 25...0, 30 Вольта в отрицательную сторону.

Прилагая между поверхностью металла трубы и грунтом электрический ток, необходимо достигнуть снижения потенциала в дефектных местах изоляции трубы до значения ниже критерия защитного потенциала, равного — 0, 85 В. В результате этого скорость коррозии снимется до 10 мкм в год, утрачивая при этом практическое значение.

Катодную защиту трубопроводов можно осуществить двумя методами:

· применением магниевых жертвенных анодов-протекторов (гальванический метод);

· применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).

 

Рисунок 4 (а, б).Принцип катодной защиты

В основу гальванического метода положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом и будет разрушаться, защищая, тем самым, металл с менее отрицательным потенциалом (рис. 4a).

Принцип катодной защиты
а) с помощью гальванических жертвенных анодов,
б) с помощью поляризации от источника постоянного тока.
1 - заложенный в грунт трубопровод,
2 - гальванический жертвенный анод,
3 - источник постоянного тока,
4 - малорастворимый анод.

На практике в качестве жертвенных гальванических анодов используются протекторы из магниевых, алюминиевых и цинковых сплавов.

Применение катодной защиты с помощью протекторов эффективно только в низкоомных грунтах (до 50 Ом-м). В высокоомных грунтах такой метод необходимой защищенности не обеспечивает.

Катодная защита внешними источниками тока более сложная и трудоемкая, но она мало зависит от удельного сопротивления грунта и имеет неограниченный энергетический ресурс (рис. 4б).

В качестве источников постоянного тока, как правило, используются преобразователи различной конструкции, питающиеся от сети переменного тока. Преобразователи позволяют регулировать защитный ток в широких пределах, обеспечивая защиту трубопровода в любых условиях.

В качестве источников питания установок катодной защиты используются воздушные линии 0, 4; 6; 10 кВ, а также автономные источники: дизельгенераторы, термогенераторы, газогенераторы и другие.

Защитный ток, накладываемый на трубопровод от преобразователя и создающий разность потенциалов «труба-земля», распределяется неравномерно по длине трубопровода. Поэтому максимальное по абсолютной величине значение этой разности находится в точке подключения источника тока (точке дренажа).

По мере удаления от этой точки разность потенциалов «труба-земля» уменьшается. Чрезмерное завышение разности потенциалов отрицательно влияет на адгезию покрытия и может вызвать наводораживание металла трубы, что может стать причиной водородного растрескивания. Снижение разности потенциалов не обеспечивает защиту от коррозии и, в определенном диапазоне, может способствовать коррозионному растрескиванию под напряжением.

Анодная защита является одним из методов борьбы с коррозией металлов в агрессивных химических средах. Она основана на переводе металла из активного состояния в пассивное и поддержании этого состояния при помощи внешнего анодного тока. Катодная защита высоколегированных сталей в сильных кислотах невозможна.

В противоположность катодной защите при анодной защите имеются только узко ограниченные области защитных потенциалов, в которых возможна защита от коррозии.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал