![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Проверка гипотез
Описательная статистика Описательная статистика с пользой применяется почти во всех областях, где собираются количественные данные. Некоторые примеры таких применений: -суммарное рассмотрение основных показателей характеристик продукции; -описание поведения некоторого параметра процесса; -характеристики времени доставки или времени ответа в сфере услуг; -суммарное рассмотрение данных потребительских обследований. Проверка гипотез Проверка гипотез в общем случае применяется тогда, когда должно быть сделано утверждение относительно параметра или распределения количества совокупностей (по выборочным оценкам) или при оценке самих данных по выборке. Например, процедура может использоваться для того, чтобы проверить: -удовлетворяет ли среднее значение (или стандартное отклонение) всей совокупности заданным требованиям - таким, как целевые требования или требования стандарта; -отличаются ли средние значения двух совокупностей данных, например, при сравнении различных партий комплектующих; -не превышает ли доля дефектных изделий заданного значения; -различие в доле дефектных единиц в продукции двух процессов; -были ли взяты данные выборки случайным образом из одной совокупности; -является ли распределение совокупности нормальным; -является ли наблюденное значение в выборке " выбросом", т.е. экстремальным значением, вызывающим сомнение. Научное познание начинается с нуждающегося в эмпирической проверке утверждения — гипотезы. Проверка гипотезы предполагает измерение интересующего исследователя явления и обобщение результатов измерения в виде, позволяющем сделать вывод в отношении гипотезы. Измерение и описание предполагает применение различных, хоть и взаимосвязанных, математических моделей и соответствующих им процедур. В процессе измерения мы представляем реальные события, явления, свойства в виде чисел, в соответствии с принятой математической моделью измерения. Например, приписываем испытуемому число, обозначающее его пол (1 — мужской, 2 — женский), или ранг, соответствующий успешности выполнения задания (1 — лучше всех, 2 — второе место, и т. д.). Затем множество подобных результатов измерения мы должны представить в виде, доступном интерпретации с точки зрения выдвинутой гипотезы. Для этого используются математические модели описания для обобщения результатов измерения: менее сложные (частоты, средние значения и др.) или более сложные (корреляционный или факторный анализ и др.). Помимо описания и измерения, существует и третье направление использования математики в социальных науках — статистическая проверка гипотез. Последнее направление тесно связано с общенаучными канонами экспериментального метода, основанными на статистическом выводе. Отдавая дань истории, отметим, что одним из первых примеров испытания статистической гипотезы была работа Дж. Арбутнота «Довод в пользу божественного провидения, выведенный из постоянной регулярности, наблюдаемой в рождении обоих» (1710-1712 гг.)1. Основываясь на том факте, что втечение 82лет подряд мальчиков каждый год рождалось больше, чем девочек, автор показал, что эти данные опровергают гипотезу о равновероятном рождении мужчин и женщин. Если вероятность рождения мальчика точно равнаО, 5, то вероятность того, что на протяжении 82 лет подряд мальчиков будет рождаться больше, чем девочек, равна ('/2)82, т. е. она очень мала. По мнению Арбутнота, данный факт — результат вмешательства божественного Провидения, поскольку жизнь мужчины находится в большей опасности, чем жизнь женщины. Таким образом, научное познание, в дополнение к здравому смыслу (но не вместе него!), обязательно предполагает применение математических методов, которые мы представили в виде трех классов моделей: измерения, описания и статистического вывода. Исследование обычно начинается с некоторого предположения, требующего проверки с привлечением фактов. Это предположение — гипотеза — формулируется в отношении связи явлений или свойств в некоторой совокупности объектов. Это хотя и не бесконечное по численности, но, как правило, недоступное для сплошного исследования множество потенциальных испытуемых. Выборка — это ограниченная по численности группа объектов (в психологии — испытуемых, респондентов), специально отбираемая из генеральной совокупности для изучения ее свойств. Соответственно, изучение на выборке свойств генеральной совокупности называется выборочным исследованием. Основные критерии обоснованности выводов исследования — это репрезентативность выборки и статистическая достоверность (эмпирических) результатов. Репрезентативность выборки — иными словами, ее представительность — это способность выборки представлять изучаемые явления достаточно полно—с точки зрения их изменчивости в генеральной совокупности. Конечно, полное представление об изучаемом явлении, во всем его диапазоне и нюансах изменчивости, может дать только генеральная совокупность. Поэтому репрезентативность всегда ограничена в той мере, в какой ограничена выборка. И именно репрезентативность выборки является основным критерием при определении границ генерализации выводов исследования. Тем не менее, существуют приемы, позволяющие получить достаточную для исследователя репрезентативность выборки. Статистическая достоверность, или статистическая значимость, результатов исследования определяется при помощи методов статистического вывода. Эти методы мы будем подробно рассматривать во второй части этой книги. Сейчас лишь отметим, что они предъявляют определенные требования к численности, или объему выборки. К сожалению, строгих рекомендаций по предварительному определению требуемого объема выборки не существует. Более того, ответ на вопрос о необходимой и достаточной ее численности исследователь обычно получает слишком поздно — только после анализа данных уже обследованной выборки. Тем не менее, можно сформулировать наиболее общие рекомендации: □ Наибольший объем выборки необходим при разработке диагностической методики — от 200 до 1000—2500 человек. □ Если необходимо сравнивать 2 выборки, их общая численность должна быть не менее 50 человек; численность сравниваемых выборок должна быть приблизительно одинаковой. □ Если изучается взаимосвязь между какими-либо свойствами, то объем выборки должен быть не меньше 30—35 человек. □ Чем больше изменчивость изучаемого свойства, тем больше должен быть объем выборки. Поэтому изменчивость можно уменьшить, увеличивая однородность выборки, например, по полу, возрасту и т. д. При этом, естественно, уменьшаются возможности генерализации выводов. Зависимые и независимые выборки. Обычна ситуация исследования, когда интересующее исследователя свойство изучается на двух или более выборках с целью их дальнейшего сравнения. Эти выборки могут находиться в различных соотношениях — в зависимости от процедуры их организации. Независимые выборки характеризуются тем, что вероятность отбора любого испытуемого одной выборки не зависит от отбора любого из испытуемых другой выборки. Напротив, зависимые выборки характеризуются тем, что каждому испытуемому одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки.
ПРИМЕР ____________________________________ Наиболее типичный пример зависимых выборок — повторное измерение свойства (свойств) на одной и той же выборке после воздействия (ситуация «до-после»). В этом случае выборки (одна — до, другая — после воздействия) зависимы в максимально возможной степени, так как они включают одних и тех же испытуемых. Могут быть и более слабые варианты зависимости. Например, мужья — одна выборка, их жены — другая выборка (при исследовании, например, их предпочтений). Или дети 5-7 лет — одна выборка, а их братья или сестры-близнецы — другая выборка.
В зависимости от того, какая операция лежит в основе измерения признака, выделяют так называемые измерительные шкалы. Они еще называются шкалами С. Стивенса, по имени ученого-психолога, который их предложил. Эти шкалы устанавливают определенные соотношения между свойствами чисел и измеряемым свойством объектов. Шкалы разделяют на метрические (если есть или может быть установлена единица измерения) и неметрические (если единицы измерения не могут быть установлены).
Номинативная шкала (неметрическая), или шкала наименований (номинальное измерение). В ее основе лежит процедура, обычно не ассоциируемая с измерением. Пользуясь определенным правилом, объекты группируются по различным классам так, чтобы внутри класса они были идентичны по измеряемому свойству. Каждому классу дается наименование и обозначение, обычно числовое. Затем каждому объекту присваивается соответствующее обозначение.
ПРИМЕРЫ __________________________________ Примеры номинативных признаков: «пол» (1 — мужской, 0 — женский), «национальность» (1 — русский, 2 — белорус, 3 — украинец), «предпочтение домашних животных» (1 — собаки, 2 — кошки, 3 — крысы, 0 — никакие) и т. д. В последнем случае если одному испытуемому присвоена 1, а другому 2, то это обозначает только то, что у них разные предпочтения: у первого — собаки, у второго — кошки. Из того, что К 2, нельзя делать вывод, что у второго предпочтение выражено больше, чем у первого, и т. д.
Ранговая, или порядковая шкала (неметрическая) (как результат ранжирования). Как следует из названия, измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства.
ПРИМЕР ____________________________________ Мы можем ранжировать всех испытуемых по интересующему нас свойству на основе экспертной оценки или по результатам выполнения некоторого задания и приписать каждому испытуемому его ранг. Или предложить испытуемым самим определить выраженность изучаемого свойства, пользуясь предложенной шкалой (5-, 7- или 10-балльной). Существует множество способов получения измерения в порядковой шкале. Но суть остается общей: при сравнении испытуемых друг с другом мы можем сказать, больше или меньше выражено свойство, но не можем сказать, насколько больше или насколько меньше оно выражено, а уж тем более — во сколько раз больше или меньше. При измерении в ранговой шкале, таким образом, из всех свойств чисел учитывается то, что они разные, и то, что одно число больше, чем другое.
ПРИМЕР ____________________________________ Четверым бегунам присвоены ранги в соответствии с тем, кто раньше достиг «финиша» (ранг 1 — самый быстрый):
Основываясь только на этих данных, мы можем судить о том, кто раньше прибежал, а кто позже. Но мы не можем судить, насколько каждый из них пробежал быстрее или медленнее другого. Глядя на эти ранги, можно было бы предположить, что бегуны А и В различаются меньше, чем бегуны В и D, так как 2—1 = 1, а 4—2 = 2. Однако такой вывод — следствие «пленяющей магии чисел»: бегун А мог быть тренированным спортсменом, пробежавшим дистанцию в 2 раза быстрее, чем бегуны В, С и D.
Интервальная шкала (метрическая). Это такое измерение, при котором числа отражают не только различия между объектами в уровне выраженности свойства (характеристика порядковой шкалы), но и то, насколько больше или меньше выражено свойство. Равным разностям между числами в этой шкале соответствуют равные разности в уровне выраженности измеренного свойства. Иначе говоря, измерение в этой шкале предполагает возможность применения единицы измерения (метрики). ПРИМЕР ____________________________________ Наиболее типичный пример измерения в интервальной шкале — температура по шкале Цельсия (°С). Важная особенность такого измерения заключается в том, что нулевая точка на шкале не соответствует полному отсутствию измеряемого свойства (О °С — это точка замерзания воды, но не отсутствия температуры, тепла). И если сегодня +5 °С, а вчера было + 10°С, то можно сказать, что сегодня на 5 градусов холоднее, но неверно утверждать, что сегодня холоднее в два раза.
Абсолютная шкала, или шкала отношений (метрическая). Измерение в этой шкале отличается от интервального только тем, что в ней устанавливается нулевая точка, соответствующая полному отсутствию выраженности измеряемого свойства.
ПРИМЕР ____________________________________ В отличие от температуры по Цельсию, температура по Кельвину представляет собой измерение в абсолютной шкале. Более привычные примеры измерения в этой шкале — это измерения роста, веса, времени выполнения задачи и т. д. Общим в этих примерах является применение единиц измерения и то, что нулевой точке соответствует полное отсутствие измеряемого свойства.
ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ, Определите, в какой шкале представлено каждое из приведенных ниже измерений: наименований, порядка, интервалов, абсолютной. 1. Порядковый номер испытуемого в списке (для его идентификации). 2. Количество вопросов в анкете как мера трудоемкости опроса. 3. Упорядочивание испытуемых по времени решения тестовой задачи. 4. Академический статус (ассистент, доцент, профессор) как указание на принадлежность к соответствующей категории. 5. Академический статус (ассистент, доцент, профессор) как мера продвижения по службе. 6. Телефонные номера. 7. Время решения задачи. 8. Количество агрессивных реакций за рабочий день. 9. Количество агрессивных реакций за рабочий день как показатель агрессивности.
|