Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Газообмен и транспорт О2






 

Транспорт О2 осуществляется в физически растворенном и хи­мически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2. Подсчитано, что физически растворенный О2 может поддерживать нормальное по­требление О2 в организме (250 мл*мин-1), если минутный объем кровообращения составит примерно 83 л*мин-1 в покое. Наиболее оптимальным является механизм транспорта О2 в химически свя­занном виде.

 

Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентраци­онного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13, 3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5, 3 кПа, или 40 мм рт.ст. Давление газов в воде или в тканях организма обозначают тер­мином «напряжение газов» и обозначают символами Ро2, Рсo2. Градиент О2 на альвеолярно-капиллярной мембране, равный в среднем 60 мм рт.ст., является одним из важнейших, но не единственным, согласно закону Фика, факторов начальной стадии диффузии этого газа из альвеол в кровь.

 

Транспорт О2 начинается в капиллярах легких после его хими­ческого связывания с гемоглобином.

 

Гемоглобин (Нb) способен избирательно связывать О2 и образо­вывать оксигемоглобин (НbО2) в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изме­няются и он может выполнять свою функцию на протяжении дли­тельного времени.

 

Гемоглобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной (Нb + О2 à НbО2) с высокой скоростью (полупериод 0, 01 с и менее) при нормальном Рог в альвеолярном воздухе; 2) способности отдавать О2 в тканях (НbО2 à Нb + О2) в зависимости от метаболических потребностей клеток организма.

 

Зависимость степени оксигенации гемоглобина от парциального давления Ог в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина, или сатурационной кри­вой (рис. 8.7). Плато кривой диссоциации характерно для насы­щенной О2 (сатурированной) артериальной крови, а крутая нисхо­дящая часть кривой — венозной, или десатурированной, крови в тканях.

 

На сродство кислорода к гемоглобину влияют различные мета­болические факторы, что выражается в виде смещения кривой дис­социации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2, 3-дифосфоглицерата. Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2: уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к О2), а увеличение рН крови — сдвиг кривой диссоциации влево (повышается сродство гемоглобина к О2) (см. рис. 8.7, А). Например, рН в эритроцитах на 0, 2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного со­держания СО2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора».

 

Рост температуры уменьшает сродство гемоглобина к О2. В ра­ботающих мышцах увеличение температуры способствует освобож­дению О2. Уменьшение температуры тканей или содержания 2, 3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации окси­гемоглобина (см. рис. 8.7, Б).

 

Метаболические факторы являются основными регуляторами связывания О2 с гемоглобином в капиллярах легких, когда уровень O2, рН и СО2 в крови повышает сродство гемоглобина к О2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О2 и способствуют переходу оксигемоглобина в его восстановленную форму — дезоксигемоглобин. В результате О2 по концентрацион­ному градиенту поступает из крови тканевых капилляров в ткани организма.

 

Оксид углерода (II) — СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2. Очень высокое сродство СО к Нb (в 200 раз выше, чем у О2) блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2.

 

Под кислородной емкостью крови понимают количество Ог, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8, 7 ммоль*л-1 кислородная емкость крови составляет 0, 19 мл О2 в 1 мл крови (температура 0oC и барометрическое давление 760 мм рт.ст., или 101, 3 кПа). Величину кислородной емкости крови определяет количество гемо­глобина, 1 г которого связывает 1, 36—1, 34 мл О2. Кровь человека содержит около 700—800 г гемоглобина и может связать таким образом почти 1 л О2. Физически растворенного в 1 мл плазмы крови О2 очень мало (около 0, 003 мл), что не может обеспечить кислородный запрос тканей. Растворимость О2 в плазме крови равна 0, 225 мл*л-1*кПа-1.

 

Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт.ст., или 13, 3 кПа) и тканями (около 40 мм рт.ст., или 5, 3 кПа) равен в среднем 60 мм рт.ст. (8, 0 кПа). Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации О2, который составляет в среднем для организма 30— 40%. Коэффициентом утилизации кислорода называется количе­ство О2, отданного при прохождении крови через тканевые капил­ляры, отнесенное к кислородной емкости крови.

 

С другой стороны, известно, что при напряжении О2 в артери­альной крови капилляров, равном 100 мм рт.ст. (13, 3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. (2, 7 кПа), а в митохондриях равна в среднем 0, 5 мм рт.ст. (0, 06 кПа).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал