Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Круговорот биогенных катионов.
Вметаболических процессах живых организмов необходимое участие принимают различные катионы. Некоторые из них содержатся в довольно значительных количествах и соответственно относятся к категории макроэлементов. Таковы натрий, калий, кальций, магний. Другие содержатся в малых количествах (миллионные доли сухого вещества), но тем не менее жизненно необходимы. Это катионы железа, цинка, меди, марганца и др., относимые к микроэлементам. Главным источником биогенных катионов на суше служит почва, в которую они поступают в процессах разрушения горных пород. Через корневую систему они попадают в растения, а в составе растительных тканей — в организмы растительноядных животных и высшие звенья пищевых цепей. Частично животные могут получать эти элементы и прямо из почвы (процесс солонцевания). Минерализация экскрементов и мертвых организмов возвращает биогенные элементы в почву и делает их доступными для включения в повторный круговорот. Этот простой цикл нарушается выносом биогенных элементов с поверхностным стоком в реки и, наконец, в моря. Выщелачивание дождевыми водами приводит к деградации коллоидального абсорбирующего комплекса и к ослаблению корневых систем растений. Особенно заметно этот процесс проявляется во влажном климате; в умеренной зоне это приводит к оподзоливанию почв. В сельском хозяйстве вынос биогенных элементов при уборке урожая неизбежен; компенсация его внесением органических и минеральных удобрений решает проблему лишь частично.
Круговороты веществ Солнечная энергия на Земле вызывает два круговорота веществ: большой, или геологический, наиболее ярко проявляющийся в круговороте воды и циркуляции атмосферы, и малый, биологический (биотический), развивающийся на основе большого и состоящий в непрерывном, циклическом, но неравномерном во времени и пространстве, и сопровождающийся более или менее значительными потерями закономерного перераспределения вещества, энергии и информации в пределах экологических систем различного уровня организации (рис. 1). Рис. 1. Принципиальная схема биологического (биотического) круговорота (по Н. Ф. Реймерсу, 1990) Оба круговорота взаимосвязаны и представляют как бы единый процесс. Подсчитано, что весь кислород, содержащийся в атмосфере, оборачивается через организмы (связывается при дыхании и высвобождается при фотосинтезе) за 2000 лет, VI некислота атмосферы совершает круговорот в обратном направлении за 300 лет, а все воды на Земле разлагаются и IOI создаются путем фотосинтеза и дыхания за 2000000 лет. Взаимодействие абиотических факторов и живых организмом экосистемы сопровождается непрерывным круговоротом вещества между биотопом и биоценозом в виде чередующихся то органических, то минеральных соединений. Обмен химических элементов между живыми организмами и неорганичен кой средой, различные стадии которого происходят внутри экосистемы, называют биогеохимическим круговоротом, или биохимическим циклом. Существование подобных круговоротов создает возможность для саморегуляции (гомеостаза) системы, что придает экосистеме устойчивость: удивительное постоянство процентного содержания различных элементов. Здесь действует принцип функционирования экосистем: получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов. Рассмотрим более подробно основные биохимические круговороты.
Круговорот воды. Самый значительный по переносимым массам и по затратам энергии круговорот на Земле — это планетарный гидрологический цикл— круговорот воды (рис. 2). Рис. 2. Общая схема круговорота воды (по Ф. Рамаду, 1981) Примечание: цифры — толщина слоя в метрах. Каждую секунду в него вовлекается 16, 5 млн. м3 воды и тратится на это более 40 млрд. МВт солнечной энергии. Но данный круговорот — это не только перенос водных масс. Это фазовые превращения, образование растворов и взвесей, выпадение осадков, кристаллизация, процессы фотосинтеза, а 288 также разнообразные химические реакции. В этой среде возникла и продолжается жизнь. Вода — основной элемент, необходимый для жизни. Количественно это самая распространенная неорганическая составляющая живой материи. У человека вода составляет 63% массы тела, грибов — 80%, растений — 80—90%, а у некоторых медуз — 98%. Вода, как мы увидим несколько позднее, участвующая в биологическом круговороте и служащая источником водорода и кислорода, составляет лишь небольшую часть своего общего объема. В жидком, твердом и парообразном состояниях вода присутствует во всех трех главных составных частях биосферы: атмосфере, гидросфере, литосфере. Все воды объединяются общим понятием «гидросферы». Составные части гидросферы связаны между собой постоянным обменом и взаимодействием. Вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Когда водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. При этом часть осадков испаряется и поступает обратно в атмосферу, другая — питает реки и водоемы, но в итоге вновь возвращается в океан речными и подземными стоками, завершая тем самым большой круговорот. Над океанами выпадает 7/9 общего количества осадков, а над континентами 2/9. Замкнутая, бессточная часть суши в 3, 5 раза беднее осадками, чем периферийная часть суши. Вода, выпавшая на сушу, в процессе фильтрации через почву обогащается минеральными и органическими веществами, образуя. подземные воды. Вместе с поверхностными стоками она поступает в реки, а затем в океаны. Поступление воды в Мировой океан (осадки, приток речных вод) и испарение с'его поверхности составляет 1260 мм в год. Несмотря на относительно малую толщину слоя водяного пара в атмосфере (0, 03 м), именно атмосферная влага играет основную роль в циркуляции воды и ее биогеохимическом круговороте. В целом для всего земного шара существует один источник притока воды — атмосферные осадки — и один источник расхода — испарение, составляющее 1030 мм в год. В жизнедеятельности растений огромная роль воды принадлежит осуществлению процессов фотосинтеза (важнейшее звено биологического круговорота) и транспирации. Подсчитано, что 1 га елового леса на влажной почве за год транспирирует около 4000 м3 воды, что эквивалентно 378 мм осадков. Суммарное испарение или масса воды, испаряемой древа i и и i или травянистой растительностью, испарившейся с поверхит ти почвы, играет важную роль в круговороте воды на кот и ' нентах. Грунтовые воды, проникая сквозь ткани растении | процессе транспирации, привносят минеральные соли, neofi ходимые для жизнедеятельности самих растений. Данные по круговороту воды на земном шаре позволят i вычислить активность водообмена в различных частях гидросферы (табл. 13). Таблиц.Активность водообмена в гидросфере (по М, И. Львовичу, 19НЛ)
Наиболее замедленной частью круговорота воды является де ятельность полярных ледников'. Круговорот здесь совершается II 8, 0 тыс. лет, что отражает медленное движение и процесс таяния ледниковых масс. Подземные воды обновляются за 5, 0 тыс. т i воды океанов—за 3, 0 тыс. лет, атмосферные воды—за 10 су i1 n Наибольшей активностью обмена, после атмосферной влаги, < ч личаются речные воды, которые сменяются в среднем каждые I I суток. Чрезвычайно быстрая возобновляемое^ основных источ. ников пресных вод и опреснение вод в процессе круговорот явЛЛ ется отражением процесса динамики вод на земном шаре. I [pom ходящий в природе круговорот самоочищающейся воды - в< '' ное движение, обеспечивающее жизнь на Земле. Пресной воды на земле очень мало. Вместе с зоной актин ного водоснабжения подземными водами они достигают ЛИШЬ 300 млн. км3, при этом 97% из них находится в ледниках Антарктиды, Гренландии, в полярных зонах и горах. Однако 61 тественный круговорот воды гарантирует, что без воды 3i не останется. Биотический (биологический) круговорот. Под биотическим (биологическим) круговоротом понимается циркуляция веществ между почвой, растениями, животными и микроорганизмами (рис. 139). По определению Н. П. Ремезова, Л. Е. Родина и Н. И. Базилевич, биотический (биологический) круговорот —)то поступление химических элементов из почвы, воды и атмосферы в живые организмы, превращение в них поступающих элементов в новые сложные соединения и возвращение их обратно в процессе жизнедеятельности с ежегодным опадом части органического вещества или с полностью отмершими организмами, входящими в состав экосистемы (Н. Ф. Реймерс, 1990). Все организмы занимают определенное место в биотическом круговороте и выполняют свои функции по трансформации достающихся им ветвей потока энергии и по передаче биомассы. Всех объединяет, обезличивает их вещества и замыкает общий круг система одноклеточных редуцентов (деструкторов). В абиотическую среду биосферы они возвращают все элементы, необходимые для новых и новых оборотов Рис. 139. Биотический (биологи- ческий) круговорот веществ в экосистеме (по А. И. Воронцову, Н. 3. Харитоновой, 1979) Следует подчеркнуть наиболее важные особенности Фотосинтез относится к мощному естественному процессу, вовлекающему ежегодно в круговорот огромные массы вещества i и юсферы и определяющему ее высокий кислородный потенциал. <)и выступает регулятором основных геохимических процессов в биосфере и фактором, определяющим наличие энергии верхних < > болочек земного шара. Фотосинтез представляет собой химичес-i vio реакцию, которая протекает, как известно, за счет солнечной шергии при участии хлорофилла зеленых растений (рис. 135). п • С02 + п • Н20 + энергия -* СпН2пО + п02 За счет углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Прямыми продуктами фотосинтеза являются различные органические соединения, а в целом процесс фотосинтеза носит довольно сложный характер. Глюкоза является простейшим продуктом фотосинтеза, образование которой совершается следующим путем: 6С02+6Н20-С6Н|206 + 602 Фотосинтез происходит за немногим исключением на всей поверхности Земли, создает огромный геохимический эффект и может быть выражен как количество всей массы углерода, вовлекаемой ежегодно в построение органического — живого вещества всей биосферы. В общий круговорот материи, связанной с построением путем фотосинтеза органического вещества, вовлекаются и такие химические элементы, как N, Р, S, а также металлы — К, Са, Mg, Na, Al. При гибели организма происходит обратный процесс — разложение органического вещества путем окисления, гниения и т. д. с образованием конечных продуктов разложения. Следовательно, общую реакцию фотосинтеза можно выразить в глобальном масштабе следующим образом: жизнь mC02 + пН20 «± Ст(Н20) + m • 02 смерть В биосфере Земли этот процесс приводит к тому, что количество биомассы живого вещества приобретает тенденцию к определенному постоянству. Биомасса экосферы (2 • 10'2т) на семь порядков меньше массы земной коры (2 • 1019т). Растения Земли ежегодно продуцируют органическое вещество, равное 1, 6 • 10пт, или 8% биомассы экосферы. Деструкторы, составляющие менее 1% от суммарной биомассы организмов планеты, перерабатывают массу органического вещества, в 10 раз превосходящую их собственную биомассу. В среднем период обновления биомассы равен 12, 5 годам. Допустим, что масса живого вещества и продуктивность биосферы были такими же от кембрия до современности (530 млн. лет), то суммарное количество органического вещества, которое прошло через глобальный биотический круговорот и было использовано жизнью на планете, составит 2 • 1012 • 5, 3 • 10712, 5=8, 5 • 1019т, что в 4 раза больше массы земной коры. По поводу данных расчетов Н. С. Печуркин (1988) писал: «Мы можем утверждать, что атомы, составляющие наши тела, побывали в древних бактериях, и в динозаврах, и в мамонтах». Закон биогенной миграции атомов В. И. Вернадского гласит: «Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (02, С02, Н2 и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей геологической истории». В. И. Вернадский в 1928—1930 гг. в своих глубоких обобщениях относительно процессов в биосфере дал представление о пяти основных биогеохимических функциях живого вещества. Первая функция — газовая. Большинство газов верхних горизонтов планеты порождено жизнью. Подземные горючие газы являются продуктами разложения органических веществ растительного происхождения, захороненных ранее в осадочных толщах. Наиболее распространенный — это болотный газ — метан (СН4). Вторая функция — концентрационная. Организмы накапливают в своих телах многие химические элементы. Среди них на первом месте стоит углерод. Содержание углерода в углях по степени концентрации в тысячи раз больше, чем в среднем для земной коры. Нефть — концентратор углерода и водорода, так как имеет биогенное происхождение. Среди металлов по концентрации первое место занимает кальций. Целые горные хребты сложены остатками животных с известковым скелетом. Концентраторами кремния являются диатомовые водоросли, радиолярии и некоторые губки, йода — водоросли ламинарии, железа и марганца — особые бактерии. Позвоночными животными накапливается фосфор, сосредотачиваясь в их костях. Третья функция — окислительно-восстановительная. В истории многих химических элементов с переменной валентностью она играет важную роль. Организмы, обитающие в разных водоемах, в процессе своей жизнедеятельности и после гибели регулируют кислородный режим и тем самым создают условия, благоприятные для растворения или же осаждения ряда металлов с переменной валентностью (V, Mn, Fe). Четвертая функция — биохимическая. Она связана с ростом, размножением и перемещением живых организмов в пространстве. Размножение приводит к быстрому распространению живых организмов, «расползанию» живого вещества в разные географические области. Пятая функция — это биогеохимическая деятельность человечества, охватывающая все возрастающее количество вещества земной коры для нужд промышленности, транспорта, сельского хозяйства. Данная функция занимает особое место в истории земного шара и заслуживает внимательного отношения и изучения. Таким образом, все живое население нашей планеты — живое вещество — находится в постоянном круговороте биофильных химических элементов. Поскольку речь идет о колоссальном числе индивидуальных участников этих процессов, которые не сопряжены жесткими функциональными связями, то пригнанность компонентов биотического круговорота— явление совершенно исключительное. Несомненно, высокий уровень системной организации и регуляции мог быть выработан и отшлифован миллиардолетней эволюцией. Круговорот углерода. Из всех биогеохимических циклов круговорот углерода, без сомнения, самый интенсивный. С высокой скоростью углерод циркулирует между различными неорганическими средствами и через посредство пищевых сетей внутри сообществ живых организмов (рис. 140). В круговороте углерода определенную роль играют СО и С02. Часто в биосфере Земли углерод представлен наиболее подвижной формой С02. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная вековой дегазацией мантии и нижних горизонтов земной коры. Миграция С02 в биосфере протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием глюкозы и других органических веществ, из которых построены все растительные ткани. В дальнейшем они переносятся по пищевым цепям и образуют ткани всех остальных живых существ экосистемы. Следует заметить, что вероятность отдельно взятого углерода «побывать» в течение одного цикла в составе многих организмов мала, потому что при каждом переходе с одного трофического уровня на другой велика возможность, что содержащая его органическая молекула будет расщеплена в процессе клеточного дыхания для получения энергии. Атомы углерода при этом вновь поступают в окружающую среду в составе углекислого газа, таким образом завершив один цикл и приготовившись начать следующий. В пределах суши, где имеется растительность, углекислый газ атмосферы в процессе фотосинтеза поглощается в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием С02. Атомы углерода возвращаются в атмосферу и при сжигании органического вещества. Важная и интересная особенность круговорота углерода состоит в том, что в далекие геологические эпохи, сотни миллионов лет назад значительная часть органи- JL n ттытосйеое в виде ископаемого топлива, нефти, угля, го Shx с»в тор|а и др. Это ископаемое топливо добывается определенном смысле завершаем круговорот углерода. По второму пути миграция углерода осуществляется СО В целом же без антропогенного вмешательства содержапи углерода в биогеохимических резервуарах: биосфере (биомас са + почва и детрит), осадочных породах, атмосфере и гидро сфере, — сохраняется с высокой степенью постоянства. Пос тоянный обмен углеродом, с одной стороны, между биосфе рой, а с другой — между атмосферой и гидросферой, обусловленный газовой функцией живого вещества — процессами фотосинтеза, дыхания и деструкции, и составляет около 6 • 101П т/год. Существует поступление углерода в атмосферу и гидросферу и при вулканической деятельности в среднем 4, 5 • 106 т/год. Общая масса углерода в ископаемом топливе (нефть, газ, уголь и др.) оценивается в 3, 2 • 1015 т, что соответствует средней скорости накопления 7 млн. т/год. Это количество по сравнению с массой циркулирующего углерода незначительное и как бы выпадало из круговорота, терялось в нем. Отсюда степень разомкнутости (несовершенства) круговорота составляет 10'4, или 0, 01%, а соответственно степень замкнутости — 99, 99%. Это означает, с одной стороны, что каждый атом углерода принимал участие в цикле десятки тысяч раз, прежде чем выпал из круговорота, оказался в недрах. А с другой стороны — потоки синтеза и распада органических веществ в биосфере с очень высокой точностью подогнаны друг к другу. В. Г. Горшковым (1988) на основе расчетов делается важное заключение: «Потоки синтеза и разложение органических веществ совпадают с точностью 104 и скоррелированы с точностью 107. Скоррелированность потоков синтеза и распада | указанной точностью доказывает наличие биологической pi гулящи окружающей среды, ибо случайная связь величин С такой точностью в течение миллионов лет невероятна». В постоянном круговороте находится 0, 2% мобильного за паса углерода. Углерод биомассы обновляется за 12, атмосферы — за 8 лет. Огромный контраст между краткостью дан ных периодов, постоянством и возрастом биосферы подтвер ждает высочайшую сбалансированность «мира углерода».
|