![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства и функции наполнителей в лакокрасочных материалах и покрытиях. ⇐ ПредыдущаяСтр 6 из 6
Белые наполнители имеют плохую укрывистость, однако аддитивности в изменении укрывистости в смесях пигментов с наполнителями не наблюдается. Наполнители начинают заметно ухудшать укрывистость только при содержании их в смесях более 25—30 % (по массе) (рис. 1). Рис. 1. Зависимость укрывистости смесей пигмента — диоксида титана с наполнителем - баритом от состава смесей: - × - × - теоретическая аддитивная зависимость; —— реальная зависимость
Это позволяет частично заменять пигменты дешевыми наполнителями. Особо ценными свойствами отличаются наполнители с пластинчатой (чешуйчатой) формой частиц: каолин, тальк, слюда, вермикулит и др. Они способны легко раскалываться вдоль листочков-пакетов и с большие трудом поперек. Это обусловлено строением их кристаллов, состоящих из двойных кремнекислородных слоев, образующих пакеты, связанные атомами алюминия или магния. Внутри пакетов связи ковалентные, а между пакетами действуют слабые силы Ван-дер-Ваальса. Схематично строение пакета талька показано на рис. 2. Рис. 2.. Модель слоистого строения «пакета» талька.
Внешние плоскости пакетов состоят из атомов кислорода и это придает им жирность на ощупь, способность к скольжению и укладке параллельно друг другу Такая упаковка частиц в покрытии является наиболее плотной (высокое ОСП) и создает черепичное перекрывание зазоров между слоями, а это, в свою очередь, понижает газо-, водо- и светопроницаемость покрытий, повышает их твердость и атмосферостойкость, препятствуе образованию сквозных трещин. Наполнители, имеющие игольчатую или волокнистую форму частик (асбест, волластонит), армируют покрытия и придают им эластичность, вибро- и звукопоглощающие свойства. Перспективным наполнителем с особо ценными свойствами является асбестин — смесь талька, частицы которого имеют чешуйчатое строение, с тремолитов Ca2Mg5[Si4O11]2 × (ОН)2, частицы которого имеют волокнистое строение. Оптимальное содержание наполнителей определяют по минимальному значению маслоемкости смесей с пигментами, характеризующей плотность совместной упаковки частиц. Находящиеся на боковых частях пластин — изломах пакетов— ионы Si4+, Al3+, Mg2+, К+, ОН- и другие активно взаимодействуют как с функциональными группами пленкообразователей и модификаторов, так и с соседними частицами, образуя коагуляционные цепочечные и сетчатые структуры, которые придают красочным системам повышенную вязкость и тиксотропность. Подбирая различные наполнители можно регулировать реологические свойства красок. Микронизированные каолин, доломит, тальк и особенно аэросил и бентонит значительно увеличивают вязкость и тиксотропность. Малоактивные зернистые наполнители такие, как барит и бланфикс, молотые кварц и слюда с низкой маслоемкостью (пластерит), уменьшают вязкость красок и вызывают потерю тиксотропности. Введение в лакокрасочные материалы добавок высокомаслоемких аморфных наполнителей (аэросил, диатомит, кизельгур, микронизированные каолин и тальк) резко снижает глянец покрытий, делает их матовыми, что иногда используют для устранения неприятного неравномерного блеска покрытий на волнистых подложках. Наполнители широко используют в качестве носителей — субстратов для осаждения на них интенсивных органических красителей и пигментов и в качестве основы — ядер для производства оболочковых (керновых) пигментов. Прозрачные неукрывистые наполнители применяются в шпатлевках-порозаполнителях для дерева, не закрывающих природной текстуры древесины. Для этого используют аэросил, сульфат кальция, оксид и гидроксид алюминия. Для увеличения трения, например при окраске палуб судов, в краски вводят такие наполнители, как молотые кварц, пемзу и вулканический пепел. Каолин, тальк, слюда и кварц снижают электрическую проводимость покрытий, барит устраняет их проницаемость для рентгеновских лучей, магнетит и маггемит придают покрытиям магнитные свойства, графит и магнетит — электрическую проводимость. Технология производства наполнителей. Наполнители получают из горных или осадочных пород, подвергая их отборке, обогащению, отмучиванию гидросепарацией от абразивных примесей, сушке, измельчению, сепарации и микронизации. Минералы и породы, имеющие изометрическое строение, при измельчении дают вполне определенные по форме спайности обломки. Так измельченный кальцит (искусственный мел) обязательно будет иметь частицы, имеющие форму ромбоэдра, частицы барита — всегда прямоугольники. Из тонких пластинок — чешуек всегда состоят частицы слюды, талька, пирофиллита, графита. Пластинки и волокна сохраняются при измельчении истиранием на бегунах и в стержневых мельницах. В шаровых мельницах получаются более короткие обломки. Измельчение их до размеров менее 3 мкм нецелесообразно. В процессах измельчения и микронизации проводят модифицирование — гидрофобизацию поверхности, добавляя 0, 5—1, 5 % ПАВ. Гидрофобизация поверхности мела, кальцита, каолина имеет двоякую цель. Прежде всего, улучшаются технологические свойства самого наполнителя: повышается его подвижность — сыпучесть порошка, снижаются влажность, слеживаемость, «зависание сводов» при хранении в бункерах, появляется возможность автоматизированного дозирования и перевозки в цистернах в виде сухого порошка или водных нефлокулирующих пульп, содержащих 70—90% твердого вещества. Гидрофобизированные наполнители легче смачиваются и взаимодействуют с пленкообразователями при изготовлении красок и шпатлевок. Так, гидрофобизированный 0, 45% (масс.) синтетических жирных кислот (СЖК) природный мел в белой водоэмульсионной краске успешно заменяет 30 % диоксида титана, повышает стойкость эмульсий, укрывистость и блеск покрытий. Наполнители, имеющие основной характер (мел, доломит) модифицируют жирными кислотами C17 — С20; нейтральные (барит) — мылами Ca, Al, Zn; наполнители кислого характера (каолин, бентонит) — аминами и четвертичными аммониевыми основаниями. Природные наполнители даже после обогащения всегда содержат примеси сопутствующих пород. Особо чистые и высокодисперсные наполнители получают осаждением из очищенных от ионов Fe, Mn и других примесей растворов. Такие наполнители являются синтетическими. Особое место занимает аэросил — синтетический диоксид кремния, содержащий не менее 99, 8 % SiO2. Размер его частиц 0, 015—0, 10 мкм, Sуд = 130¸ 380 м2/г. Аэросил получают гидролизом паров тетрахлорида кремния в пламени водорода при температуре более 1100°С. Это производство аналогично получению диоксида титана хлоридным способом. Прозрачные, непористые, округлой формы коллоидные частицы аэросила имеют большой запас поверхностной энергии и легко образуют обратимые сетчатые коагуляционные структуры. Добавка всего лишь 0, 5—1, 5% (масс.) аэросила придает тиксотропность лакокрасочным материалам. На поверхности частиц аэросила всегда имеются силанольные группы Аэросил, как и другие содержащие кремний соединения, попадая в легкие, вызывает фиброзные процессы — заболевание силикозом. Предельно допустимая концентрация в воздухе рабочих помещений 1 мг/м3. Для уменьшения пыления аэросил выпускают в гранулированном виде с размером гранул от 5 до 40 мкм. В краски вводится обычно в виде перетертой пасты, содержащей 10 % (масс.) аэросила. В прошлом использование наполнителей имело целью только удешевление лакокрасочных материалов или придание покрытиям необходимой толщины в случае применения органических пигментов с высокой красящей способностью; применялись наполнители также для шпатлевок. По мере выявления и изучения особых свойств наполнителей, способствующих улучшению технологических свойств красок и увеличению срока службы покрытий, значение наполнителей как функциональных пигментов непрерывно возрастает. Потребность в качественных наполнителях приближается к потребности в белых пигментах.
|