Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Третий закон термодинамики






 

Третий закон термодинамики утверждает, что энтропия индивидуального кристаллического вещества при температуре абсолютного нуля равняется нулю. Это означает, что при этом условии достигается полная упорядоченность и макросостояние кристалла чистого вещества может быть реализованным лишь одним способом.

Третий закон термодинамики дает возможность определить энтропию всех индивидуальных веществ при любой температуре.

Энтропию веществ при стандарнтих условиях называют стандартной энтропией и помечают S0298. Значения стандартных энтропий используют для вычисления константы химического равновесия и для определения направления хода химических реакций.

Следует сказать, что третий закон термодинамики дает возможность вычислять абсолютные значения энтропий разных веществ в определенном состоянии, тогда как для других термодинамических функций (внутренней энергии, энтальпии и тому подобное) можно определить только их изменение при переходе данной системы из одного состояния в другое.

 

Термодинамические потенциалы

 

По изменению энтропии можно сделать вывод о направлении и границах хода процессов только в изолированных системах. Для закрытых систем используют термодинамические потенциалы: энергию Гиббса G (изобарно-изотермический потенциал), которую определяют по формуле:

G = Н – ТS

и энергию Гельмгольца F (изохорно-изотермический потенциал), которая выражается уравнением:

F = U – ТS.

Энергия Гельмгольца характеризует способность системы выполнять роботу и определяет ту часть энергии, которая в изохорно-изотермическом процессе превращается в работу.

Изохорный и изобарный потенциалы являются функциями состояния системы. Их используют для определения направления хода процесса при условиях термодинамического равновесия. Абсолютные величины термодинамических параметров неизвестны, поэтому в вычислениях используют их изменение (∆ F и ∆ G).

Если ∆ F и ∆ G равняются нулю, то система находится в состоянии равновесия. Когда ∆ F < 0 и ∆ G < 0, то процесс может происходить самостоятельно с превращением энергии в полезную работу. В случае, когда ∆ F > 0 и ∆ G > 0, изменение состояния системы происходит только при использовании внешней работы.

Условием самостоятельного протекания химических процессов является рост энтропии и уменьшение энергии Гиббса, а условием термодинамического равновесия – максимальное значение энтропии и минимальное значение энергии Гиббса.

Да еще нужно отметить, что в изолированной системе запас энергии является величиной постоянной, в открытой системе энергия может расти, уменьшаться или оставаться без изменения. Энергия Гиббса для самопротекаемых процессов, которые происходят при постоянных температуре и давлении, всегда уменьшается.

Это имеет важное значение для биологических систем. Организмы во время своего роста уменьшают энтропию, но это уменьшение всегда сопровождается ростом энтропии окружающей среды.

 

 

Применение основных положений термодинамики к живым организмам.

 

Превращение энергии в организме происходит соответственно первому и второму законам термодинамики. Однако живой организм как объект термодинамических исследований отличается целым рядом специфических свойств от систем, которые являются объектами исследования в технической и химической термодинамике. Среди них самыми важными есть такие:


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал