Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Линейная регрессия. ⇐ ПредыдущаяСтр 5 из 5
Рассмотрим двумерную случайную величину (X, Y), где X и Y – зависимые случайные величины. Представим приближенно одну случайную величину как функцию другой. Точное соответствие невозможно. Будем считать, что эта функция линейная. Для определения этой функции остается только найти постоянные величины a и b.
Определение. Функция g(X) называется наилучшим приближением случайной величины Y в смысле метода наименьших квадратов, если математическое ожидание принимает наименьшее возможное значение. Также функция g(x) называется среднеквадратической регрессией Y на X.
Теорема. Линейная средняя квадратическая регрессия Y на Х вычисляется по формуле:
в этой формуле mx=M(X), my=M(Y), коэффициент корреляции величин Х и Y. Величина называется коэффициентом регрессии Y на Х. Прямая, уравнение которой ,
называется прямой сренеквадратической регрессии Y на Х.
Величина называется остаточной дисперсией случайной величины Y относительно случайной величины Х. Эта величина характеризует величину ошибки, образующейся при замене случайной величины Y линейной функцией g(X) =a Х + b. Видно, что если r=± 1, то остаточная дисперсия равна нулю, и, следовательно, ошибка равна нулю и случайная величина Y точно представляется линейной функцией от случайной величины Х. Прямая среднеквадратичной регрессии Х на Y определяется аналогично по формуле:
Прямые среднеквадратичной регрессии пересекаются в точке (тх, ту), которую называют центром совместного распределения случайных величин Х и Y.
|