Главная страница
Случайная страница
КАТЕГОРИИ:
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Combining Trigonometry Skills
Choosing The Appropriate Technique
Sometimes more than one technique from the formula table at the top of this page can be used to solve a trig problem, but you will want to choose the most efficient and easiest method to save time. The flowchart below shows how to decide which method to use:
|
|
Examples
These examples illustrate the decision-making process for a variety of triangles:
e.g. 1
|
| 1. The triangle is not right-angled.
2. We do know a side and its opposite angle.
3. Therefore we use the Sine Rule.
| e.g. 2
|
| 1. The triangle is right-angled.
2. The question involves angles.
3. Therefore we use trig ratios - sin, cos and tan.
| e.g. 3
|
| 1. The triangle is right-angled.
2. The question does not involve angles.
3. Therefore we use Pythagoras's Theorem.
| e.g. 4
|
| 1. The triangle is not right-angled.
2. We do not know a side and its opposite angle.
3. Therefore we use the Cosine Rule.
| Practice Questions
|