![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
ИстираемостьСтр 1 из 2Следующая ⇒
ПРОЧНОСТЬ
ИСТИРАЕМОСТЬ
13.Петрография наука о горных породах (См. Горные породы), их минералогических и химических составах, структурах и текстурах, условиях залегания, закономерностях распространения, происхождения и изменения в земной коре и на поверхности Земли. Существует тенденция разделения общей науки о горных породах на две части — П., преимущественно описательного характера, и петрологию (См. Петрология), в которой даётся анализ генетических соотношений. Однако часто эти термины рассматриваются как синонимы. Предмет и методы петрографии. П. — наука геологического цикла; она тесно связана с минералогией (См. Минералогия), геохимией (См. Геохимия), вулканологией (См. Вулканология), тектоникой (См. Тектоника), стратиграфией (См. Стратиграфия) и учением о полезных ископаемых (См. Полезные ископаемые). По типам изучаемых горных пород различают П. магматических, П. метаморфических и П. осадочных горных пород, или литологию (См. Литология). Электронная микроскопия, совокупность электронно-зондовых методов исследования микроструктуры твердых тел, их локального состава и микрополей (электрических, магнитных и др.) с помощью электронных микроскопов (ЭМ) - приборов, в которых для получения увеличенных изображений используют электронный пучок. Электронная микроскопия включает также методики подготовки изучаемых объектов, обработки и анализа результирующей информации. Различают два главных направления электронной микроскопии: трансмиссионную (просвечивающую) и растровую (сканирующую), основанных на использовании соответствующих типов ЭМ. Они дают качественно различную информацию об объекте исследования и часто применяются совместно. Известны также отражательная, эмиссионная, оже-электронная, лоренцова и иные виды электронной микроскопии, реализуемые, как правило, с помощью приставок к трансмиссионным и растровым ЭМ. Рентгеновские лучи возникают в результате соударений быстролетящих электронов с поверхностью анода рентгеновской трубки. Быстрые электроны, вырываясь из вольфрамового катода, попадают на анод, тормозятся, испуская при этом рентгеновские лучи. От скорости электронов и от вещества анода зависят свойства рентгеновских лучей. Длина волны рентгеновского излучения по величине близка к межатомным расстояниям в кристаллах твердых материалов, поэтому кристаллы являются для рентгеновских лучей трехмерными дифракционными решетками. Действительно, при пропускании сквозь кристалл твердого материала рентгеновских лучей возникает дифра-кционная картина (рентгенограмма), которая может быть зафиксирована на фотопленке или экране. дифференциально-термический анализ; ДТА: Метод, позволяющий регистрировать разность температур исследуемого вещества и вещества, используемого в качестве эталона, в зависимости от температуры или времени. 14.Композиционные материалы состоят из металлической матрицы полимерной, керамической или другой, упрочнённой высокопрочными волокнами (волокнистые материалы) или тугоплавкими тонкодисперсными частицами, не растворяющимися в основном металле (дисперстно-упрочненные материалы). Композиционные материалы с волокнистым наполнителем (упрочнителем) по механизму армирующего действия делят на дискретные с l / d ≈ 10…10³, где l – длина волокна, d – диаметр волокна и с непрерывным волокном, в которых l / d → ∞. Дискретные волокна располагаются в матрице хаотично. Диаметр волокон 0.1…100 мкм. Часто композит представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Нередко волокна сплетаются в трёхмерные структуры. В отличие от волокнистых композитов, в дисперсно-упрочненных материалах, матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят в ней движение дислокации, то есть являющиеся ее упрочняющей фазой. Высокая прочность достигается при размере частиц 10…500 нм при среднем расстоянии между частицами 100…500 нм и равномерном их распределении в матрице. Оптимальное содержание 2 фазы для различных материалов неодинаково, но обычно не превышает 5…10 % (об.).
|