Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Механизмы образования озоновой дыры.






Согласно одному из них уменьшение озона связано с увеличением оксидов азота, вызванных в свою очередь солнечной активностью. Как известно, максимум солнечной активности в последнем 11-летнем цикле наблюдается в 1979 – 1983 гг. В это же время наблюдалось увеличение (на 30 – 60%) концентрации оксидов азота в мезосфере Южного полушария. В последующем отмечался перенос оксидов на более низкие уровни в стратосферу в период полярной ночи. Фотохимические реакции “азотного” цикла с участием оксидов азота, как мы знаем, приводят к разрушению озона, что обуславливает снижение его концентрации в стратосфере и образовании озоновой дыры. Наблюдавшиеся отставания по времени между максимумом солнечной активности и ореолом развития озоновой дыры в 1985-м и последующих годах объясняются следующим образом. К моменту максимума и начала спада солнечной активности происходит резкое увеличение нисходящего потока оксидов азота в стратосферу и последующее формирование озоновой дыры. В период спада солнечной активности на границе мезосферы поток оксидов азота уменьшается, но в стратосфере их концентрация максимальна, а, следовательно, содержание озона минимально. Наконец, на последней стадии, которая началась в 1986г. и к90-м годам еще не закончилась, в минимуме солнечной активности содержание оксидов азота в стратосфере уменьшается, а количество озона должно увеличиваться и состояние озонового слоя должно возвратиться к первоначальному.

Такой механизм мог реально объяснить процесс формирования озоновой дыры. В его пользу до последнего времени говорил тот факт, что в 198г. наблюдалось значительное увеличение концентрации озона по сравнению с предыдущим годом, осенью которого отмечалось максимальное разрушение озонового слоя над Антарктидой. Однако измерения 1989г. показали, что дыра вновь появилась, т.е. вместо ее исчезновения, при спаде солнечной активности, начинают отмечаться колебания величены от года к году. Помимо этого, в рамках данного механизма остаются без ответа по крайней мере, два вопроса. Первый: почему в процессе предшествующих 11-летних циклов солнечной активности не формировалась озоновая дыра? В частности, один из предыдущих циклов, максимум которого приходится на 1958 – 1960гг., обладал активностью большей, чем текущий. Однако в те годы отмечено лишь небольшое снижение концентрации озона, которое возможно связанно с последствиями ядерных испытаний. Второй вопрос: почему озоновая дыра формировалась только в Южном полушарии?

Другой предполагаемый механизм связывает образование озоновой дыры с “хлорным” циклом антропогенного происхождения. Одну из фотохимических реакций с участием хлора, я рассматривала в одном из предыдущих разделов. Механизм, связанный с реакциями хлорного цикла, предполагает поступление хлорных соединений в полярную стратосферу благодаря циркуляции атмосферы. А в атмосферу разрушающие озон соединения поступают с поверхности Земли непрерывно из миллионов аэрозольных упаковок, бытовых холодильников, рефрижераторов, в результате выбросов химических заводов и т.д. И не смотря на то. Что хозяйственная деятельность человека пока еще не привела к заметному снижению суммарного содержания озона в атмосфере, фреоны могут быть причастны к разрушению озонового слоя над Антарктидой – таково мнение большой группы ученых. Но и в этом механизме есть безответный вопрос: почему антропогенно обусловленный механизм не проявил себя в Северном полушарии, где поступление хлорных, бромистых и других соединений, разрушающих озон, идет более интенсивно?

Третий возможный механизм – так называемый динамический – пытается объяснить формирование озоновой дыры чисто циркуляционными процессами в стратосфере и мезосфере и горизонтальным перераспределением озона при общем его постоянстве. Опуская аргументацию сторонников такого механизма, отмечу лишь, что при указанной циркуляции должен происходить отток озона из полярной озоносферы и его накапливание в полосе 60 – 70 градусов южной широты. Хотя такое накапливание и наблюдалось, но ожидаемый по этой теории баланс озона в Южном полушарии отсутствовал, – суммарное содержание озона там в этот период снижалось.

 

Воздействие на здоровье и окружающую среду.
Озон в стратосфере защищает Землю от разрушительной ультрафиолетовой солнечной радиации. Разрушение озонового слоя позволит большему количеству солнечной радиации достигнуть поверхности Земли. Каждый потерянный процент содержания озона в стратосфере приводит к увеличению интенсивности воздействия ультрафиолетовой солнечной радиации на 1, 5-2 процента, по данным Агентства по охране окружающей среды США. Для человека увеличение интенсивности ультрафиолетового излучения прежде всего опасно воздействием солнечной радиации на кожу и глаза. Радиация с длиной волн в спектре от 280 до 320 нанометров - УФ лучи, которые частично блокируются озоном - могут вызвать преждевременное старение и рост числа раковых заболеваний кожи, а также поражение растений и животных. Радиация с длиной волн больше, чем 320 нанометров, УФ спектра, практически не поглощается озоном и фактически необходима человеку для формирования витамина Д. УФ радиация с длиной волн в спектре 200 - 280 нанометров может вызвать серьезные последствия для биологических организмов. Однако излучение этого спектра практически полностью поглощается озоном. Таким образом, «ахиллесова пята» земной жизни - это излучение довольно узкого спектра УФ волн длиной от 320 до 280.

 

 

Увеличение количества случаев заболевания раком кожи.
По данным Агентства по охране окружающей среды США в случае разрушения озонового слоя увеличится частота трех видов рака кожи. Два наиболее распространенных типа рака кожи, это базальноклеточный рак (базалиома) и плоскоклеточный рак (шиповидный). Сегодня более 500 тысяч американцев ежегодно подвержены таким заболеваниям. В ранней стадии развития эти типы рака излечимы. Третий тип рака, саркома, встречается значительно реже, но это наиболее опасная форма. Ежегодно отмечается около 25 тысяч случаев этого заболевания. В пяти тысячах случаев саркома приводит к летальному исходу, что составляет 65 процентов всех смертей, вызванных всеми видами рака кожи вместе взятыми. Согласно данным Совета безопасности Российской Федерации, с 1970 по 1980 годы в СССР был отмечен рост всех видов раковых заболеваний кожи на 13 процентов и на 8 процентов в период с 1985 по 1986 годы (достигнув почти 80 тысяч). Совет безопасности предсказывает удвоение числа заболевших каждые восемь лет. В то время, как ученые в основном согласны с тем, что повышенная УФ радиация вызывает базальноклеточный и плоскоклеточный рак кожи, связь между солнечной радиацией и саркомой не так очевидна. Для более мягких форм рака наблюдается прямая корреляция между временем, проведенным на солнце и возникновением заболевания - это чаще всего происходит у людей в возрасте 70-80 лет в местах, где кожа открыта для воздействия солнечного света (например, лицо и руки). Агентство по охране окружающей среды рассчитало, что увеличение УФ радиации на 2 процента приведет к увеличению случаев заболевания раком (не являющихся саркомой) на 2-6 процентов. Саркома, однако, встречается у более молодых людей и в местах не обязательно подверженных воздействию прямых солнечных лучей. Она имеет тенденцию появляться у людей, вообще не проводящих много времени на открытом воздухе. Опасность развития саркомы прямо связана с чувствительностью кожи отдельного человека к солнечному свету (светлокожие люди более подвержены этому процессу, чем темнокожие). По данным Института экологической политики и Института по исследованиям энергии и окружающей среды, опубликованным в 1988 году в книге «Как спасти нашу кожу», жертвами такой формы рака становятся почти исключительно люди кавказского происхождения, особенно кавказцы со светлой кожей.
 
Ультрафиолетовая радиация может повредить роговую оболочку глаза, соединительную оболочку глаза, хрусталик и сетчатку глаза. Ультрафиолетовая радиация может вызвать фотокератозиз (или снежную слепоту), похожий на солнечный ожег роговой или соединительной оболочки глаза. Увеличение воздействия ультрафиолетовой радиации на людей в следствие разрушения озонового слоя приведет к увеличению числа людей с катарактой, по мнению авторов «Как спасти нашу кожу». Катаракта закрывает хрусталик глаза, снижая остроту зрения, и может вызвать слепоту. Другие потенциальные последствия, связанные с разрушением озонового слоя стратосферы описаны ниже и взяты частично из книги «Как спасти нашу кожу»:

Поражение глаз.

 

Уничтожение урожаев.

 

Способность поглощать ультрафиолетовую радиацию сильно отличается в зависимости от организма. Таким образом, ультрафиолетовая радиация вредно сказывается на росте растений, уменьшая размер листьев и, тем самым, сокращая полезную площадь для улавливания энергии. По данным Агентства по охране окружающей среды США, растение останавливается в развитии и вообще отмечается уменьшение массы растения, подверженного воздействию ультрафиолетовой радиации.Тем не менее, сегодня отсутствует научная информация, которая могла бы однозначно ответить на вопрос о влиянии ультрафиолетового излучения на растения. Изучены были только четыре из десяти экосистем Земли - леса умеренной полосы, сельскохозяйственные экосистемы, травяные экосистемы умеренной полосы, экосистемы тундры и высокогорной тундры. Более того, данные были получены в лабораторных условиях, где растения в целом более чувствительны к ультрафиолетовой радиации, по сравнению с растениями произрастающими в естественных условиях.

 

 

Исследования, проведенные Университетом Мериленда, показали, что две трети растений проявили чувствительность к ультрафиолетовой радиации и обнаружили большую устойчивость некоторых сорняков, по сравнению с культурными растениями, к ней. Отдельные исследования показали, что сокращение озона на 25 процентов может привести к существенному сокращению урожаев соевых бобов. Многие организмы выработали механизмы, защищающие их от солнечной радиации: сокращение времени контакта с радиацией (некоторые морские организмы избегают активности в середине дня, когда ультрафиолетовое излучение наиболее сильное); пигментная защита; восстановление поврежденных ДНК или тканей. Тем не менее, в случае увеличения интенсивности солнечной радиации многим организмам существующих механизмов будет явно недостаточно для защиты.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал