Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод хорд. Приближенное решение уравнений






ЧИСЛЕННЫЕ МЕТОДЫ

Приближенное решение уравнений

Задача о нахождении приближенных значений действительных корней уравнения предусматривает предварительное отделение корня, т.е. установление промежутка, в котором других корней уравнения нет. Предполагаем, что функция в промежутке непрерывна вместе со своими частными производными и , значения и функции на концах промежутка имеют разные знаки, т.е. и обе производные и сохраняют знак во всем промежутке .

Метод хорд

Пусть требуется вычислить действительный корень уравнения , изолированный на отрезке . Рассмотрим график функции . Пусть и Точки графика и соединим хордой. За приближенное значение искомого корня примем абсциссу точки пересечения хорды с осью

Это приближенное значение корня находится по формуле

где принадлежит интервалу Пусть например, , тогда за новый (более узкий промежуток изоляции корня можно принять . Соединив точки и , получим в точке пересечения хорды с осью второе приближение , которое вычислим по формуле

и т.д. Последовательность чисел стремится к искомому корню уравнения . Вычисление приближенных значений корня уравнения следует вести до тех пор, пока не перестанут изменяться те десятичные знаки, которые мы хотим сохранить в ответе. (т.е.пока не будет достигнута заданная степень точности).

Если точный корень уравнения , изолированный на отрезке , а приближенное значение корня, найденное методом хорд, то оценка погрешности этого приближенного значения такова:


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал