Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Контрольную работу следует выполнять в отдельной тетради или на листах формата А4, с обязательным оформлением титульного листа.
При оформлении контрольной работы необходимо переписать условия каждого задания, записать решение, используя при этом необходимые формулы, дать краткое пояснение всех расчетов. Задания, в которых даны только ответы без необходимых пояснений и расчетов, не засчитываются. В конце работы необходимо привести список использованной литературы, поставить свою подпись и дату. Получив проверенную работу, следует внимательно изучить замечания и рекомендации преподавателя, проанализировать отмеченные ошибки и недостатки, внести необходимые дополнения и исправления Задание № 1. Даны вершины А (х1; у1), В (х2; у2), С (х3; у3) треугольника АВС. Требуется найти: А) уравнение стороны АС; Б) уравнение высоты, проведенной из вершины В; В) длину высоты, проведенной из вершины А; Г) величину угла В (в радианах); Д) уравнение биссектрисы угла В. А(20; 5), В(-4; 12), С(-8; 9). Задание № 2. Даны вершины А1(х1; у1; z1), A2(х2; у2; z2), A3(х3; у3; z3), A4(x4; y4; z4). Средствами векторной алгебры найти: А) длину ребра А1A2; Б) угол между ребрами А1A2 и А1A3; В) площадь грани А1A2A3; Г) длину высоты пирамиды, проведенной из вершины A4; Д) уравнение высоты пирамиды, проведенной из вершины A4; Е) объем пирамиды А1A2A3A4.. Варианты: А1(2; -1; 9), A2(1; 1; 5), A3(7; 3; 1), A4(2; 6; -2). Задание № 3. Решить систему линейных алгебраических уравнений методом Крамера. Задание № 4. Решить 2 системы методом Гаусса и 1 систему матричным методом (в таблицах даны элементы расширенных матриц систем 4-х уравнений с 4-мя неизвестными).
Задание № 5. Z1, Z2 – комплексные числа. Выполнить действия: А) Z1+ Z2; Б) Z1 × Z2; В) Z1/Z2. Варианты: Z1=5–i; Z2=4-3i Задание № 6. Записать комплексное число в тригонометрической и показательной формах Варианты: Z=2-i. Задание № 7. Вычислить указанные пределы, не используя правило Лопиталя. Варианты:
Задание № 8. Найти производные функций. Варианты:
Задание № 9. С помощью дифференциала найти приближенное значение функции. Варианты: А) ln1.34; Б)sin320 Задание № 10. Для функции z=f(x, y) найти частные производные первого и второго порядков. Варианты: Задание № 11. Вычислить неопределенные интегралы. Варианты:
Задание № 12. Решить задачи комбинаторики. Варианты: 1. В группе из 25 студентов, среди которых 10 девушек, разыгрываются 5 билетов. Определите вероятность того, что среди обладателей билетов окажутся две девушки. Задание № 13. Межотраслевой балансовый метод. Постановка задачи: машиностроительное предприятие состоит из трех цехов, каждый из которых выпускает определенный тип продукции. По данным за отчетный год построен баланс производства и распределения продукции в денежном выражении. Схема балансовой модели представлена в таблице № 1, где каждый цех рассматривается с двух сторон: как производитель продукции (строка таблицы) и как потребитель продукции (столбец таблицы). Таблица № 1
Таким образом, в каждом столбце балансовой модели показаны затраты деталей узлов и узлов собственного производства, покупных материалов, сырья и трудовые затраты. Строки модели показывают, где используется продукция каждого цеха (т. е. в какой цех поступает и сколько идет на реализацию). На следующий год планируется выпуск товарной продукции первого цеха увеличить на 50 %, а остальных цехах оставить без изменения. Рассчитать следующие показатели: коэффициенты прямых материальных; коэффициенты полных затрат и коэффициенты косвенных затрат; сбалансированные объемы производства в каждом цехе (валовый оборот), исходя из запланированного объема конечной продукции; трудовые затраты в каждом цехе на плановый период; затраты сырья и материалов на плановый период; величины материальных потоков между цехами; на основе полученных значений показателей построить баланс производства и распределения продукции на плановый период (представить в виде таблицы № 1) и проверить выполняется ли основное соотношение баланса. Для каждого варианта необходимо взять из таблицы № 2 три строки, указанные в номере варианта, добавить к ним строку с затратами сырья и материалов и строку с затратами труда. Информацию выбранных строк записать в виде таблицы № 1. Таблица № 2
Варианты (номер варианта и номера строк таблицы):
Задание № 14. Оптимальное планирование (симплексный метод). Постановка задачи: предприятие располагает ресурсами сырья, рабочей силы и оборудованием, необходимыми для производства любого из трех видов производимых товаров 1, 2, 3. Затраты ресурсов на изготовление единицы данного вида товаров; прибыль, получаемая от реализации единицы товара, а также запасы ресурсов указаны в следующей таблице: Таблица № 3
Определить, какой ассортимент товара надо выпускать, чтобы прибыль была максимальной. Исходную информацию можно представить в виде векторов и матрицы: А = (аij) = - матрица затрат ресурсов на единицу продукции. В = - вектор запаса ресурсов сырья, рабочей силы и оборудования. Р = - вектор прибыли от единицы товара 1, 2, 3. Варианты:
Информацию записать в виде таблицы № 3. построить модель. Решить симплексным методом. Проанализировать полученный результат. Задание №15. Графический метод. Постановка задачи: для изготовления двух видов продукции имеются три вида ресурсов, объемы которых ограничены величинами b1, b2, b3 соответственно. Расход i -го вида ресурса на изготовление одной единицы j -го вида продукции равен aij, i=1, 2, 3, j=1, 2. Объем выпуска каждого из видов продукции ограничен числом x*1 и x*2 единиц, а прибыль, получаемая от реализации одной единицы изготовленной продукции равна c1 и c2 соответственно. Данные задачи могут быть представлены в матрично-векторном виде A = , b = , x* = (), c = (c1; c2), или в форме таблицы:
Требуется составить план выпуска продукции (число единиц продукции по каждому виду), удовлетворяющий принятым ограничениям и приносящий максимум прибыли после реализации выпущенной продукции. Варианты:
Задание № 16. Транспортная задача. Постановка задачи: на складах А1, А2, А3 имеются запасы продукции в количествах 180, 300, 120 т. соответственно. Потребители В1, В2, В3 должны получить эту продукцию в количествах 110, 350, 140 т. соответственно. Найти такой вариант прикрепления поставщиков к потребителям, при котором сумма затрат на перевозки была бы минимальной. Расходы по перевозке 1 т. продукции заданы матрицей С (ден. ед.) С=
|