Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вторая квадратичная форма. ⇐ ПредыдущаяСтр 2 из 2
, , |N|= , , 2 кв.ф.инв-на отн(…как и 1кв.ф) Следует теорема: Все кривые на пов-ти, прох.ч/з общ.точку и имеющие общ.кас.вектор, имеют одинаковую норм.кривизну Главные напрвления в точке поверх-ти. Те направления в точке поверх-ти, ктр дают экстремум норм.кривизны, наз-ся главными направлениями.кривизны-главные кривизны. радиус кривизны, (2’), предположим R’=0 в точке эксттремума д/ иметь решение относ-но , НиД, чтобы . Т.В кажд.точке пов-ти два взаимно перпендик.главных напр-я.Пусть выбрана ортогон.коорд.сеть.Т.к. СЛУ(3) опред-т экстремальные норм.кривизны и главн.направления. , , , Дискриминант > 0, опр.2 главных напр. , . Эти два соотношения явл.ортогональными друг другу.Т.о.в кажд.точке пов-ти сущ-т 2 главн.напр-я. Линии кривизны. Линии на поверхности, в каждой точке которое касс. вектор совпадает с одним из главных направлений в этой точке, называется линиями кривизны. Уравнения линии кривизны. Интегрируя обыкновенные дифференциальные уравнения => это и есть уравнение линии кривизны. Следствие 1. Через каждую точку поверхности проходят по две линии кривизны, так как в каждой точке есть направление. По одну- одна кривая, по другую- друг. Кривые между собой перпендикулярны. Следствие 2. Линии поверхности кривизны образуют ортогональную сеть. Опр2. Поверхность называется отнесённой к линиям кривизны, если в качестве координатных линий, u=const, v=const, приняты линии кривизны. Следствие 3. Для того, что бы поверхность была отнесена к линиям кривизны, достаточно, чтобы средние координаты обеих квадратичных форм = 0 => F=M=0
|