Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Ядро и органеллыСтр 1 из 7Следующая ⇒
Органеллы цитоплазмы по принципу своего строения разделяются на две группы: мембранные и немембранные. Мембранные органеллы представляют собой замкнутые компартменты, ограниченные мембраной, которая представляет собой их стенку. Немембранные органеллы не являются клеточными компартментами и имеют иное строение. Ядро и органеллы Цитоплазма содержит специализированные структуры — органоиды (органеллы), выполняющие определенные функции. Важнейшие из них — митохондрии, рибосомы, пластиды, эндоплазматическая сеть, аппарат Гольджи. Митохондрии образованы двумя мембранами — наружной и внутренней, между которыми находится бесструктурная жидкость — матрикс. Внутренняя мембрана митохондрий, на которой находятся ферменты, образует многочисленные выросты (кристы), увеличивающие ее поверхность. В матриксе митохондрий могут находиться рибосомы и молекулы ДНК. В митохондриях осуществляются процессы клеточного дыхания, которые обеспечивают клетку энергией. Рибосомы — небольшие, лишенные мембранной структуры органеллы, состоящие из рибосомальной РНК и белков. Каждая рибосома образована двумя соединенными между собой субъединицами различной величины. Основная функция рибосом — «сборка» новых белковых молекул. Пластиды — двухмембранные органеллы, характерные только для растительных клеток. Различают три типа пластид: 1) бесцветные — лейкопласты; 2) зеленые — хлоропласта; 3) желто-красные — хромопласты. Все три группы пластид связаны общим происхождением и сходным строением. Лейкопласты сосредоточены преимущественно в тканях и органах растений, лишенных доступа света: семенах, клубнях, корневищах, корнеплодах. Их основная функция — накопление запасных органических веществ, главным образом крахмала, образующегося в листьях из Сахаров. Крахмальные зерна могут полностью заполнять лейкопласт. Хлоропласты — это пластиды, где осуществляется процесс фотосинтеза. В связи с этим они сосредоточены преимущественно в фотосинтезирующих органах и тканях (листья, молодые стебли, зеленые плоды). Их внутренняя мембрана образует сложную систему, состоящую из замкнутых уплощенных мешочков — тилакоидов, которые группируются стопками в граны. В тилакоидах в основном и находятся пигменты, улавливающие кванты света и преобразующие их энергию в энергию химических связей. В хлоропластах содержатся в основном зеленые пигменты — хлорофилл а и хлорофилл b. Присутствуют также желто-красные пигменты — каротиноиды. Пространство между тилакоидами заполнено бесцветным матриксом (стромой). Хромопласты содержат каротиноиды. Они придают желтую, оранжевую и красную окраску осенним листьям, лепесткам цветков, зрелым плодам. Все пластиды содержат ДНК и РНК и размножаются делением. Эндоплазматическая сеть (ЭПС) представляет собой разветвленную систему микроскопических каналов и цистерн, ограниченных мембраной. Различают два типа ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). На мембранах гладкой ЭПС находятся ферменты жирового и углеводного обмена, поэтому здесь синтезируются липиды и углеводы. На мембранах шероховатой ЭПС располагаются рибосомы, в которых синтезируются белки. Синтезируемые органические вещества по каналам эндоплазматической сети доставляются к различным органеллам клетки, т. е. ЭПС выполняет также транспортную функцию. Аппарат Гольджи состоит из расположенных один над другим плоских мешочков — диктиосом, от краев которых отчленяются пузырьки различного диаметра. Он выполняет функцию синтеза полисахаридов, необходимых для формирования клеточной стенки, а также некоторых других веществ. Ядро обычно находится в центральной части клетки. Основная его функция — хранение и воспроизводство наследственной информации. Оно регулирует процессы обмена веществ клетки и контролирует работу других органелл. В нем различают ядерную оболочку, хромосомы (хроматин), ядрышки, ядерный сок — кариоплазму. 1.3. (1.4.) Клеточная теория — важнейшее биологическое обобщение, согласно которому все живые организмы состоят из клеток. Изучение клеток стало возможным после изобретения микроскопа. Впервые клеточное строение у растений (срез пробки) обнаружил английский ученый, физик Р. Гук, он же предложил термин «клетка» (1665 г.). Голландский ученый Антони ван Левенгук впервые описал эритроциты позвоночных, сперматозоиды, разнообразные микроструктуры растительных и животных клеток, различные одноклеточные организмы, в том числе бактерии и пр. В 1831 г. англичанин Р. Броун обнаружил в клетках ядро. В 1838 г. немецкий ботаник М. Шлейден пришел к выводу, что ткани растений состоят из клеток. Немецкий зоолог Т. Шванн показал, что из клеток состоят и ткани животных. В 1839 г. вышла книга Т. Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений», в которой он доказывает, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ. Основные положения клеточной теории Т. Шванна можно сформулировать следующим образом.
М. Шдейден и Т. Шванн ошибочно считали, что главная роль в клетке принадлежит оболочке и новые клетки образуются из межклеточного бесструктурного вещества. В дальнейшем в клеточную теорию были внесены уточнения и дополнения, сделанные другими учеными. Еще в 1827 г. академик Российской АН К.М. Бэр, открыв яйцеклетки млекопитающих, установил, что все организмы начинают свое развитие с одной клетки, представляющей собой оплодотворенное яйцо. Это открытие показало, что клетка является не только единицей строения, но и единицей развития всех живых организмов. В 1855 г. немецкий врач Р. Вирхов приходит к выводу, что клетка может возникнуть только из предшествующей клетки путем ее деления. На современном уровне развития биологии основные положения клеточной теории можно представить следующим образом.
Значение клеточной теории Отало ясно, что клетка – важнейшая составляющая часть живых организмов, их главный морфофизиоло-гический компонент. Клетка – это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме. На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира. 1.5. Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60–90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции. Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот. Функции цитоплазмы:
|