Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Bluetooth






IrDA

IrDA относится к категории wireless (беспроводных) внешних интерфейсов, однако в отличие от радио-интерфейсов, канал передачи информации создается с помощью оптических устройств. Опыт показывает, что среди других беспроводных линий передачи информации инфракрасный (ИК) открытый оптический канал является самым недорогим и удобным способом передачи данных на небольшие расстояния (до нескольких десятков метров).

Технически сам порт IrDA основан на архитектуре коммуникационного СОМ-порта ПК, который использует универсальный асинхронный приемо-передатчик UART и работает со скоростью передачи данных 2400–115200 bps. Связь в IrDA полудуплексная, т. к. передаваемый ИК-луч неизбежно засвечивает соседний PIN-диодный усилитель приемника. Воздушный промежуток между устройствами позволяет принять ИК-энергию только от одного источника в данный момент.

Первым стандартом, принятым IrDA (Infrared Data Association), был, так называемый, Serial Infrared standart (SIR). Данный стандарт позволял обеспечивать передачу информации со скоростью 115.2 kb/s. В 1994 году IrDA опубликовала спецификацию на общий стандарт, получивший название IrDA-standart, который включал в себя описание Serial Infrared Link (последовательная инфракрасная линия связи), Link Access Protocol (IrLAP) (протокол доступа) и Link Management Protocol (IrLMP) (протокол управления). И, наконец, в ноябре 1995 года Microsoft Corporation заявила о внесении программного обеспечения, обеспечивающего инфракрасную связь, использующую IrDA-standart, в стандартный пакет операционной системы Windows'95. В настоящее время IrDA-standart – самый распространенный стандарт для организации передачи информации по открытому инфракрасному каналу.

BLUETOOTH

Активно продвигаемая консорциумом Bluetooth Special Interest Group (Bluetooth SIG), технология Bluetooth предназначена для построения так называемых персональных беспроводных сетей (personal area network). Оборудование Bluetooth работает в диапазоне частот 2.4 ГГц, для передачи трафика используется метод расширения спектра со скачкообразной перестройкой частоты.

Суммарная пропускная способность сетей Bluetooth – 780 кбит/с. При использовании асинхронного протокола максимальная скорость однонаправленной передачи данных составляет 722 кбит/с. В первоначальном варианте спецификаций (v1.0) предусматривалось, что длина соединений в сетях Bluetooth не будет превышать 10 м, однако в 2001 году нескольким производителям удалось увеличить дальность связи до 100 метров (при работе вне помещений). Это обстоятельство, а также возможность объединения нескольких пикосетей Bluetotth в разнесенную сеть дали основание некоторым экспертам рассматривать технологию Bluetooth в качестве одного из конкурентов 802.11.

Wi-Fi

Wi-Fi — торговая марка Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11. Под аббревиатурой Wi-Fi (от английского словосочетания Wireless Fidelity, которое можно дословно перевести как «беспроводное качество» или «беспроводная точность») в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Любое оборудование, соответствующее стандарту IEEE 802.11, может быть протестировано в Wi-Fi Alliance и получить соответствующий сертификат и право нанесения логотипа Wi-Fi.

Wi-Fi был создан в 1991 году NCR Corporation/AT& T (впоследствии — Lucent Technologies и Agere Systems) в Ньивегейн, Нидерланды. Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с. Создатель Wi-Fi — Вик Хейз (Vic Hayes) находился в команде, участвовавшей в разработке таких стандартов, как IEEE 802.11b, IEEE 802.11a и IEEE 802.11g. В 2003 году Вик ушёл из Agere Systems. Agere Systems не смогла конкурировать на равных в тяжёлых рыночных условиях, несмотря на то что её продукция занимала нишу дешёвых Wi-Fi решений. 802.11abg all-in-one чипсет от Agere (кодовое имя: WARP) плохо продавался, и Agere Systems решила уйти с рынка Wi-Fi в конце 2004 года.

Стандарт IEEE 802.11n был утверждён 11 сентября 2009 года. Его применение позволяет повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с[1]. С 2011 по 2013 разрабатывался стандарт IEEE 802.11ac, окончательное принятие стандарта запланировано на начало 2014 года. Скорость передачи данных при использовании 802.11ac может достигать нескольких Гбит/с. Большинство ведущих производителей оборудования уже анонсировали устройства поддерживающие данный стандарт.

27 июля 2011 года Институт инженеров электротехники и электроники (IEEE) выпустил официальную версию стандарта IEEE 802.22[2]. Системы и устройства, поддерживающие этот стандарт, позволят передавать данные на скорости до 22 Мбит/с в радиусе 100 км от ближайшего передатчика.

 

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка (Ad-hoc), когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID (англ.)русск.) с помощью специальных сигнальных пакетов на скорости 0, 1 Мбит/с каждые 100 мс. Поэтому 0, 1 Мбит/с — наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID приёмник может выбирать между ними на основании данных об уровне сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения. Более подробно принцип работы описан в официальном тексте стандарта[5].

Однако, стандарт не описывает всех аспектов построения беспроводных локальных сетей Wi-Fi. Поэтому каждый производитель оборудования решает эту задачу по-своему, применяя те подходы, которые он считает наилучшими с той или иной точки зрения. Поэтому возникает необходимость классификации способов построения беспроводных локальных сетей.

По способу объединения точек доступа в единую систему можно выделить:

· Автономные точки доступа (называются также самостоятельные, децентрализованные, умные)

· Точки доступа, работающие под управлением контроллера (называются также «легковесные», централизованные)

· Бесконтроллерные, но не автономные (управляемые без контроллера)

По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

· Со статическими настройками радиоканалов

· С динамическими (адаптивными) настройками радиоканалов

· Со «слоистой» или многослойной структурой радиоканалов

15 вопрос

Особенности подключения и работы устройств с интерфейсом PS/2.

PS/2 - разъем, применяемый для подключения клавиатуры и манипулятора типа мышь (рисунок 1). Впервые появился в 1987 году на компьютерах IBM PS/2 и впоследствии получил признание других производителей и широкое распространение в персональных компьютерах и серверах рабочих групп. Скорость передачи данных — от 80 до 300 Кб/с и зависит от производительности подключенного устройства и программного драйвера.

Предшественником порта PS/2 являлся DIN-разъем применяемый изначально в аудиоаппаратуре, для клавиатур использовался пяти контактный DIN. Цвета жил порта PS/2 обычно такие: первая - оранжевый, вторая - голубой, третья - зеленый, четвёртая - белый. Аналогичные жилы для клавиатур с DIN - разъемом обычно такие: первая - красный, вторая - черный, третья - серый, четвёртая - желтый.

Некоторые материнские платы могут правильно работать при «неправильном» подключении мыши и клавиатуры (то есть при подключении клавиатуры в разъём предназначенный для мыши, и, наоборот, мыши в разъём для клавиатуры) — материнская плата сама распознает устройства и позволит пользователю продолжить работу и с мышью и с клавиатурой без их переподключения. Большинство же материнских плат при неправильном подключении (или при отключении во время работы), потребуют от пользователя перезагрузки и «правильного» подключения устройств.


 

14 вопрос

Классификация, назначение и способы подключения интерфейсов SCSI.

Классификация интерфейсов SCSI

SCSI широко применяется на серверах, высокопроизводительных рабочих станциях; RAID-массивы на серверах часто строятся на жёстких дисках со SCSI-интерфейсом (однако, в серверах нижнего ценового диапазона всё чаще применяются RAID-массивы на основе SATA). В настоящее время устройства на шине SAS постепенно вытесняют устаревшую шину SCSI.

способы подключения интерфейсов SCSI

13 вопрос

Отличительные особенности интерфейсов SCSI и SAS. Назначение и способы подключения

Serial Attached SCSI (SAS) — компьютерный интерфейс, разработанный для обмена данными с такими устройствами, как жёсткие диски и ленточные накопители. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями (англ. Direct Attached Storage (DAS) devices). SAS разработан для замены параллельного интерфейса SCSI и позволяет достичь более высокой пропускной способности, чем SCSI; в то же время SAS обратно совместим с интерфейсом SATA: устройства 3Гбит/с и 6Гбит/с SATA могут быть подключены к контроллеру SAS, но устройства SAS нельзя подключить к контроллеру SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Протокол SAS разработан и поддерживается комитетом T10. Текущую рабочую версию спецификации SAS можно скачать с его сайта. SAS поддерживает передачу информации со скоростью до 6 Гбит/с; ожидается, что к 2012 году скорость передачи достигнет 12 Гбит/с. Благодаря уменьшенному разъему SAS обеспечивает полное двухпортовое подключение как для 3, 5-дюймовых, так и для 2, 5-дюймовых дисковых накопителей (раньше эта функция была доступна только для 3, 5-дюймовых дисковых накопителей с интерфейсом Fibre Channel).

Отличительные особенности интерфейсов SCSI и SAS

  • SAS использует последовательный протокол передачи данных между несколькими устройствами, и, таким образом, использует меньшее количество сигнальных линий.
  • Интерфейс SCSI использует общую шину. Таким образом, все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. Интерфейс SAS использует соединения точка-точка — каждое устройство соединено с контроллером выделенным каналом.
  • В отличие от SCSI, SAS не нуждается в терминации шины пользователем.
  • В SCSI имеется проблема, связанная с тем, что время распространения сигнала по разным линиям, составляющим параллельный интерфейс, может отличаться. Интерфейс SAS лишён этого недостатка.
  • SAS поддерживает большое количество устройств (> 16384), в то время как интерфейс SCSI поддерживает 8, 16, или 32 устройства на шине.
  • SAS обеспечивает более высокую пропускную способность (1.5, 3.0, 6.0 или 12.0 Гбит/с). Такая пропускная способность может быть обеспечена на каждом соединении инициатор-целевое устройство, в то время как на шине SCSI пропускная способность шины разделена между всеми подключёнными к ней устройствами.
  • контроллеры SAS могут поддерживать подключение устройств с интерфейсом SATA, при прямом подключении - с использованием протокола SATA, при подключении через SAS-экспандеры - с использованием туннелирования через протокол STP (SATA Tunneled Protocol).
  • SAS, также как и параллельный SCSI, использует команды SCSI для управления и обмена данными с целевыми устройствами.

Как правило, разъёмы SAS значительно меньше разъёмов традиционного интерфейса SCSI, что позволяет использовать разъёмы SAS для подключения компактных накопителей размером 2, 5 дюйма.

Существует несколько вариантов разъёмов SAS:

  • SFF 8482 — вариант, механически совместимый с разъёмом интерфейса SATA. За счет этого возможно подключать устройства SATA к контроллерам SAS. Подключить же SAS-устройство к интерфейсу SATA — не получится, этому препятствует отсутствие посередине разъема специального выреза-ключа;
  • SFF 8484 — внутренний разъём с плотной упаковкой контактов; позволяет подключить до 4 устройств;
  • SFF 8470 — разъём с плотной упаковкой контактов для подключения внешних устройств (разъём такого типа применяется в интерфейсе Infiniband, а кроме того, может использоваться для подключения внутренних устройств); позволяет подключить до 4 устройств;
  • SFF 8087 — уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внутренних устройств;
  • SFF 8088 — уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внешних устройств;

11 вопрос

Интерфейсы устройств накопителей информации. Основные характеристики, преимущества и недостатки

Жесткий диск - основное устройство для долговременного хранения больших объемов данных и программ. На самом деле это не один диск, а группа соосных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Таким образом, этот " диск" имеет не две поверхности, как должно быть у обычного плоского диска, а 2n поверхностей, где n - число отдельных дисков в группе. Над каждой поверхностью располагается головка, предназначенная для чтения-записи данных.

При высоких скоростях вращения дисков (90 об/с) в зазоре между головкой и поверхностью образуется аэродинамическая подушка, и головка парит над магнитной поверхностью на высоте, составляющей несколько тысячных долей миллиметра. При изменении силы тока, протекающего через головку, происходит изменение напряженности динамического магнитного поля в зазоре, что вызывает изменения в стационарном магнитном поле ферромагнитных частиц, образующих покрытие диска. Так осуществляется запись данных на магнитный диск.

Операция считывания происходит в обратном порядке. Намагниченные частицы покрытия, проносящиеся на высокой скорости вблизи головки, наводят в ней ЭДС самоиндукции. Электромагнитные сигналы, возникающие при этом, усиливаются и передаются на обработку.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал