![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод Петрика ⇐ ПредыдущаяСтр 2 из 2
Метод Петрика используется для нахождения всех минимальных покрытий конституент единицы и позволяет получить все тупиковые ДНФ по импликантной матрице. Суть метода заключается в следующем. По импликантной матрице строится так называемое конъюнктивное представление импликантной матрицы. Для этого все простые импликанты обозначаются разными буквами (обычно прописными латинскими). После этого, для каждого i -ro столбца импликантной матрицы строится дизъюнкция всех букв, обозначающих строки матрицы, пересечение которых с i -м столбцом отмечено крестиком. Конъюнктивное представление импликантной матрицы образуется как конъюнкция построенных дизъюнкций для всех столбцов матрицы. К конъюнктивному представлению матрицы могут быть применены все соотношения булевой алгебры с целью его упрощения. После раскрытия скобок и выполнения всех возможных поглощений получается дизъюнкция конъюнкций, каждая из которых содержит все импликанты тупиковой ДНФ. Согласно определению, каждая тупиковая ДНФ определяется таким набором строк, что в таблице, образованной этими строками в каждом столбце имеется одна единица, причём из этого набора нельзя удалить ни одной строки так, чтобы при этом ни один столбец не стал нулевым. Таблица 3
Пусть в общем случае в таблице имеется N столбцов и m строк. Поставим в соответствие простым импликантам сокращённой ДНФ переменные P 1 … Pm. Фиксируем некоторую дизъюнкцию простых импликант. Будем считать, что Pi = 1, если i -я простая импликанта входит в эту дизъюнкцию и Pi = 0, в противном случае. Запишем в виде формалы условие того, что рассматриваемая дизъюнкция является ДНФ функции. Для этого необходимо, чтобы в каждом столбце таблицы была хотя бы одна единица, т.е.
где Эту формулу можно трактовать как КНФ некоторой двоичной функции от переменных P 1 … Pm, которая принимает значение 1 только на тех наборах переменных, которые соответствуют некоторым ДНФ исходной функции, и значение 0 — на наборах, которые соответствуют наборам импликант, не являющихся ДНФ исходной функции. Заметим, что функция Для табл. 3 функция
Отсюда P 1 P 3 P 5 даёт для f тупиковую форму:
а P 1 P 2 P 4 P 5 даёт:
Метод Петрика используется для нахождения всех минимальных покрытий конституент единицы и позволяет получить все тупиковые ДНФ по импликантной матрице. Суть метода заключается в следующем. По импликантной матрице строится так называемое конъюнктивное представление импликантной матрицы. Для этого все простые импликанты обозначаются разными буквами (обычно прописными латинскими). После этого, для каждого i -ro столбца импликантной матрицы строится дизъюнкция всех букв, обозначающих строки матрицы, пересечение которых с i -м столбцом отмечено крестиком. Конъюнктивное представление импликантной матрицы образуется как конъюнкция построенных дизъюнкций для всех столбцов матрицы. К конъюнктивному представлению матрицы могут быть применены все соотношения булевой алгебры с целью его упрощения. После раскрытия скобок и выполнения всех возможных поглощений получается дизъюнкция конъюнкций, каждая из которых содержит все импликанты тупиковой ДНФ. Пример. Задана импликантная матрица (табл. 4.) Найти методом Петрика все тупиковые ДНФ булевой функции f, описываемой данной матрицей.
Имеющиеся простые импликанты обозначим буквами: /x1x4 = A. x2x3x4 = B. x1x2x3 = C. Тогда конъюнктивное представление w матрицы имеет вид w = A*A*A*(A v B)*C(B v C). Упростим его. w = A*(A v B)*C(B v C) = AC. Тупиковая ДНФ содержит две простые импликанты: А = /x1x4 и C = x1x2x3 и имеем вид f = /x1x4 v x1x2x3.
|