![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Электроакустический тракт ультразвукового дефектоскопаСтр 1 из 4Следующая ⇒
ОБОРУДОВАНИЕ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ
Структурная схема дефектоскопа
Принцип работы дефектоскопа удобно изучать, рассматривая его структурную схему. Основные блоки дефектоскопа с электронно-лучевой трубкой (ЭЛТ) продемонстрированы на рис.33.
Рисунок 33 – Блок схема импульсного дефектоскопа
Генератор зондирующих импульсов 7 вырабатывает импульс электрических колебаний, возбуждающий ультразвуковые колебания в преобразователе 3. Отражённые от дефекта УЗ-сигналы принимает тот же (совмещённая схема) или другой (раздельная схема) преобразователь и трансформирует их в электрические импульсы, которые поступают на вход усилителя 1. Коэффициент усиления его регулируется во времени с помощью системы 4 временной регулировки чувствительности (ВРЧ). Усиленный до требуемой величины сигнал поступает на вход электронно-лучевого индикатора 6 и автоматического сигнализатора дефектов (АСД) 2. Синхронизатор 8 обеспечивает требуемую временную последовательность работы всех узлов дефектоскопа, одновременно с запуском генератора импульсов (или с некоторой задержкой) он приводит в действие генератор развёртки 9 ЭЛТ индикатора. В современных дефектоскопов большинство функциональных узлов реализовано в виде подпрограмм микроконтроллеров в блоке цифровой обработки (БЦО).
Электроакустический тракт ультразвукового дефектоскопа
В электроакустический тракт входят пьезопреобразователь, прилегающие к нему тонкие слои и электрические колебательные контуры генератора и приёмника дефектоскопа. На рис. 34 показана общая схема электроакустического тракта дефектоскопа. В иммерсионных и наклонных преобразователях акустической нагрузкой является иммерсионная жидкость или призма преобразователя. Акустический контакт пьезопреобразователя со средой осуществляется не непосредственно, а через промежуточные тонкие слои: протектор и слой контактной жидкости (вода, масло и т.п.).
Рисунок 34– Схема электроакустического тракта дефектоскопа: 1 – демпфер; 2 – пьезопреобразователь; 3 – промежуточный слой; 4 – изделие
Пьезопреобразователь электрически связан с генератором При расчёте электроакустического тракта ставится задача достижения оптимального сочетания основных характеристик: чувствительности, полосы пропускания, мёртвой зоны, разрешающей способности и стабильности акустического контакта. Задача решается путём рассмотрения прохождения волн в слоистой системе. Чувствительность при излучении Произведение
Чувствительность используется при вычислении общего ослабления УЗ сигнала в электроакустическом и акустическом трактах дефектоскопа:
Полоса пропускания ПЭП определяется кривой зависимости чувствительности от частоты. Приближённо её можно охарактеризовать величиной, принятой в радиотехнике:
где Чем шире полоса пропускания ПЭП, тем меньшее искажение претерпевают импульсы в процессе преобразования электрических колебаний в акустические и обратно. Для достижения максимальной разрешающей способности и минимальной мёртвой зоны стремятся формировать короткие импульсы. Если ширина полосы пропускания недостаточна, импульсы растянуться, что приведёт к ухудшению разрешающей способности и увеличению мёртвой зоны. Минимально допустимое значение Стабильность акустического контакта необходимо учитывать только при расчёте режима пьезоэлемента прямого ПЭП. В других типах ПЭП между пьезоэлементом и изделием расположена протяженная среда, поэтому улучшение или ухудшение передачи ультразвука из этой среды в изделие не отражается на колебательном режиме пьезопластины. Для прямого ПЭП, наоборот, изделие является частью нагрузки, а толщина слоя контактной жидкости определяет степень связи с этой нагрузкой. Чтобы обеспечить стабильность акустического контакта, нужно свести к минимуму влияние толщины слоя контактной жидкости на режим колебаний пьезопластины. На рис. 35 приведены кривые изменения чувствительности ПЭП с пьезоэлементом из цирканата титана свинца (ЦТС) в зависимости от частоты при излучении в плексиглас при наличии демпфера с акустическим сопротивлением
Рисунок 35 – Изменение чувствительности ПЭП в зависимости от частоты
Параметром семейства кривых на рис.35 является добротность
Для последовательного колебательного контура физический смысл добротности – это во сколько раз напряжение на ёмкостном элементе превышает напряжение на генераторе. При
|