Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Развитие у детей деятельности счета
Счет – математическое понятие, это операция, имеющая целью установить, сколько элементов содержит данное конечное множество. 1, 5-2 года. Дети сопровождают свои операции с множеством такими словами как «вот», «еще» или числительными в любом порядке. Каждое повторение ребенок соотносит с одним предметом и одним движением, тем самым он устанавливает взаимнооднозначное соответствие между количеством предметов и количеством слов, движений. 2-4 года. Появляется интерес к сравнению групп множеств путем установления взаимнооднозначного соответствия. Последовательное называние числительных еще не означает овладение процессом счета, т.к. ребенок не понимает итога счета, т.е. не умеет отвечать на вопрос «сколько?» Счет еще не служит средством определения количества. Чаще всего названное числительное служит сигналом к остановке называния числительных. 4-5 лет. Дети начинают употреблять числительные в определенном порядке и отличать итог счета от процесса счета. Начинают понимать, что равночисленные множества всегда именуются одним числом. 5-6 лет. Усваивают последовательность называния числительных, понимают, что количество не зависит от направления счета, что число является показателем количества, осознают отношения между числами, т.е. осваивают обратный счет. 6-7 лет. Овладевают счетом группами, т.е. понимают, что единицей счета может быть не только отдельный предмет, а целая группа. 7-8 лет. Овладевают счетом десятками и новой деятельностью – вычислением. Счет связан с конкретным множеством, с определением количества в определенном множестве, а вычисление – абстрактная операция, здесь участвую только числа (без называния предмета). Развитие понятия числа 3-4 года. Дети используют слова-числительные, но не понимают, что такое число. На этом этапе дети способны лишь сравнивать различные множества путем установления взаимнооднозначного соответствия. 4-5 лет. Дети могут сравнивать числа на основе сравнения множеств, но не воспринимают число абстрактно, без множества. 5-6 лет. Способны сравнивать любые числа на основе свойства транзитивности. При измерении понимают число как результат измерения, т.е. как отношение всей величины (целого) к условной мерке (части). Понимают, что число служит лишь показателем количества. Происходит абстрагирование числа от конкретных множеств. Развитие представлений о натуральном ряде чисел Натуральный ряд – последовательность целых положительных чисел, расположенных в порядке их возрастания. 2-4 года. На основе речи взрослых дети начинают рано употреблять слова-числительные: сначала хаотично, затем упорядочено. Осознание порядка следования чисел происходит сразу в 2-х направлениях: - увеличиваются последовательности чисел, которые дети запоминают, - начинают осознавать, что каждое числительное всегда занимает свое определенное место, но на этом этапе не понимают, почему это происходит. У детей образуются рече-слухо-двигательные связи между называемыми числительными. Ребенок называет ряд натуральных чисел подобно бессмысленной считалке и не может продолжить ряд чисел с середины, т.к. дети не понимают отношений между числами. 4-5 лет. Дети не всегда могут ответить на вопрос, какое число идет до этого, а какое после. Не могут назвать предыдущие числа. Для них ряд движется как бы вперед (понимают только последние числа). Такое представление о натуральном ряде называется «пространственным образом натурального ряда чисел». Чтобы найти число на единицу больше дети мысленно или вслух начинают называть слова-числительные от начала ряда. Таким образом, разностные отношения между предыдущими и последующими числами еще не усвоены. 5-6 лет. Эмпирические представления о натуральном ряде как пространственном образе перестраиваются в понятие о натуральном ряде чисел. Дети начинают осознавать основной принцип построения натурального ряда
3. Методика формирования у детей представлений о числе, обучение счёту Методика обучения счету (4 - 6 лет) Единого мнения по обучению детей счёту не существует. Леушина А.М. считала: не надо спешить, надо начинать учить считать после обучения операциям над множествами. Счет — это деятельность с присущими всякой деятельности признаками, т. е. наличием цели, средств, способов ее осуществления и результатом в виде итогового числа как показателя мощности множества. Сущность деятельности счета состоит в том, что между элементами конкретной совокупности и числами натурального ряда как стандартного множества чисел, каждое из которых является показателем определенного класса множеств, устанавливается взаимно-однозначное соответствие. Многочисленные исследования педагогов и психологов (А. М. Леушина, Г. С. Костюк, В. В. Данилова и др.) показали, что овладение детьми счетом осуществляется постепенно и проходит ряд этапов. Обучение счету начинается с практических действий с множествами, дробления их на элементы, сравнения смежных множеств. Счетная деятельность условно может быть поделена на отдельные этапы, а именно процесс счета и итог, в связи с чем выделяется соотнесенный и итоговый счет. Процессом счета, т. е. соотнесенным счетом (называнием чисел) дети овладевают быстрее. Итог счета усваивается значительно труднее. Леушина определила шесть этапов развития счетной деятельности у детей. При этом первые два этапа являются подготовительными. В этот период дети оперируют с множествами, не используя чисел. Оценка количества осуществляется с помощью слов «много», «один», «ни одного», «больше — меньше — поровну». Эти этапы характеризуются как дочисловые. Первый этап можно соотнести со вторым и третьим годом жизни. Основная цель этого этапа — ознакомление со структурой множества. Основные способы — выделение отдельных элементов в множестве и составление множества из отдельных элементов. Дети сравнивают контрастные множества: много и один. Второй этап также дочисловой, однако в этот период дети овладевают счетом на специальных занятиях по математике. Цель — научить сравнивать смежные множества поэлементно, т. е. сравнивать множества, отличающиеся по количеству элементов на один. Основные способы — накладывание, прикладывание, сравнение. В результате этой деятельности дети должны научиться устанавливать равенство из неравенства, добавляя один элемент, т. е. увеличивая, или убирая, т. е. уменьшая, множество. Третий этап условно соотносится с обучением детей пятого года жизни. Основная цель — ознакомить детей с образованием числа. Характерные способы деятельности — сравнение смежных множеств, установление равенства из неравенства (добавили еще один предмет, и их стало поровну — по два, по четыре и т. д.). Результат — итог счета, обозначенный числом. Таким образом, ребенок вначале овладевает счетом, а затем осознает результат — число. Четвертый этап овладения счетной деятельностью осуществляется на шестом году жизни. На этом этапе происходит ознакомление детей с отношениями между смежными числами натурального ряда. Результат — понимание основного принципа натурального ряда: у каждого числа свое место, каждое последующее число на единицу больше предыдущего, и наоборот, каждое предыдущее — на единицу меньше последующего. Пятый этап обучения счету соотносится с седьмым годом жизни. На этом этапе происходит понимание детьми счета группами по 2, по 3, по 5. Результат — подведение детей к пониманию десятичной системы счисления. На этом обучение детей дошкольного возраста обычно заканчивается. Шестой этап развития счетной деятельности связан с овладением детьми десятичной системой счисления. На седьмом году жизни дети знакомятся с образованием чисел второго десятка, начинают осознавать аналогию образованная любого числа на основе добавления единицы (увеличения числа на единицу). Понимают, что десять единиц составляют один десяток. Если к нему прибавить еще десять единиц, то получится два десятка и т. д. Перед тем, как обучать детей счету, необходимо создавать ситуации, в которых дети сталкиваются с необходимостью умения считать. Обучение счету происходит на основе сравнения двух групп предметов по количеству. 1 этап. Воспитатель сам ведет процесс счета, а дети повторяют за ним итоговое число. Показывается независимость числа предметов от других признаков предметов. 2 этап. Воспитатель учит детей процессу счета и знакомит с образованием каждого числа, учит сравнивать смежные числа. Сначала детей учат считать в пределах 3, а потом в пределах 5, затем - 10. Методика обучения отсчитыванию предметов (4 – 6 лет) С помощью проблемной ситуации необходимо показать отличие процесса счета от процесса отсчитывания. Сосчитать – это значит определить, сколько всего элементов в множестве. Отсчитать – выделить указанное количество элементов из множества. Правила счета и отсчитывания совпадают, однако при обучении отсчитыванию особое внимание следует уделить следующему правилу: числительное надо называть лишь на 1 момент движения. Виды упражнений по отсчитыванию: • Отсчитывание по образцу (столько-сколько); сначала образец дается в непосредственной близости, а затем на расстоянии; • Отсчитывание по названному числу (или показанной цифре); • Детям старшего возраста предлагается запомнить 2 смежных числа и отсчитать 2 группы предметов (из корзины отсчитать 2 яблока и 3 груши); обращается внимание на то, чтобы дети запомнили какое количество предметов надо отсчитать (просим детей повторить названные числа). Методика обучения порядковому счету (4 – 6 лет) 1 этап. Сначала детям предлагаются подготовительные упражнения (с несколькими видами наглядного материала), в которых показывается, что для ответа на вопрос «сколько?» необходимо использовать числительные «один, два, три», т.е. количественные. При этом не важно, в каком направлении ведется счет и как предметы расположены в пространстве. Затем знакомство с порядковым счетом проводится в процессе драматизации сказки («Теремок», «Репка», «Колобок»). Воспитатель показывает детям, что для ответа на вопрос «Какой по счету?» используются порядковые числительные: первый, второй, третий и т.д.. Важно, чтобы предметы располагались линейно и указывалось направление счета. 2 этап. Показывается детям, в каких случаях используются количественные, а в каких порядковые числительные. Предлагаются упражнения, в которых задаем 2 вопроса: «Сколько всего?» и «Какой по счету?». Следим, какие числительные используют дети. Поясняем, в каком случае, какие числительные надо произносить. Детей подводят к выводу, что для того, чтобы определить, сколько предметов, используют количественный счет, а чтобы определить место предмета среди других, используется порядковый счет. Кроме таких упражнений важно создавать ситуации в повседневной жизни и играх, в которых дети видели бы отличия в использовании количественного и порядкового счета. Например, в игре «Театр» уточняем, что обозначает цифра на билете: сколько всего мест или какое по счёту указанное место. Виды упражнений: - определить номер указанного предмета; - назвать предмет по указанному номеру. Игра «Что изменилось?» (Выясняется, на каком месте расположена игрушка. Дается команда «Глазки спят». Затем воспитатель меняет место расположения игрушки. После слов «глазки открыли» предлагается тем, кто заметил изменения, поднять руку и ответить: какой по порядку эта игрушка стояла раньше, а какой стоит сейчас). Методика ознакомления с цифрами (3 – 5 лет) Ознакомление с названием и внешним видом цифры идет в возрасте до четырёх лет, а после обучения счету детей знакомят с сущностью цифр. Этап. • Воспитатель в различных ситуациях знакомит детей с именем и внешним видом цифры (в процессе прогулки обращает внимание на номера домов, машин; на номера страниц). • Воспитатель читает стишки, в которых описывается внешний вид цифр. (С.Маршак «Веселый счет», Г. Виеру «Считалочка»). 2 этап: (ср.возр.) Как только дети научились считать в соответствующих пределах, их необходимо познакомить с сущностью каждой цифры последовательно. Предлагается обозначить в группе количество предметов разными способами: соответствующим количеством счетных палочек, соответствующей числовой карточкой, и, наконец, с помощью цифр. Можно предложить детям рассмотреть таблицу, где нарисовано одно и то же количество разных предметов и все они обозначены одной цифрой. Подводим детей к тому, что одинаковое количество предметов всегда обозначается одной и той же цифрой. Отличие понятия «число» и «цифра» (лiк – число, лiчба - цифра): цифра - значок или рисунок, с помощью которого можно написать число или указать количество предметов. Надо понимать, что число изображается не только с помощью цифры. Можно познакомить детей с римской нумерацией – изображением числа с помощью рисунков. Или предложить цветные числа – палочки Кьюизенера. Упражнения на закрепление сущности цифр: - Подобрать цифру для соответствующего множества. - Создать (найти) группу предметов, соответствующую по количеству показанной цифре. Игры: «Найди пару» (лото).«Найди свой домик». Знакомство с цифрой 0. Детям предлагается 3 блюдца: на одном - 3 предмета, на другом - 5, на третьем - ни одного. Просим обозначить с помощью цифр количество предметов в каждом блюдце. Дети могут сообразить, что на пустое блюдце надо положить «0». Если дети затрудняются, то воспитатель читает стихотворение про «0»: Цифра вроде буквы «О» - это «ноль» иль «ничего». А затем поясняем, что отсутствие предметов также обозначаем цифрой, это – цифра «0». Знакомство с изображением числа 10. Надо показать детям, что число 10 изображается с помощью двух цифр «1» и «0». Воспитатель читает соответствующий стих. Для закрепления подходят те же игры, что и для других цифр. В игры и упражнения включаем 0 и 10. Формирование представлений о составе числа из отдельных единиц в пределах 5 (5 – 6 лет) Эта задача является подготовительной для обучения операциям над числами. Наглядный материал должен отличаться хотя бы по 1-му признаку (видовому) и быть однородным. Методика: детям предлагается 3 (4, 5) предметов (например, флажки разного цвета) и задаются следующие вопросы: - Сколько всего предметов? - Сколько предметов одного вида? (Сколько красных флажков? Сколько синих флажков? Сколько зеленых флажков?) Вывод: у нас всего 3 флажка: 1 красный, 1 зеленый, 1 синий. Аналогичная работа проводится еще с двумя видами наглядного материала, а затем делается обобщающий вывод: 3 это 1, 1 и 1. Для закрепления предлагается назвать разные предметы (например, овощи), чтобы их всего было 3. Аналогичным образом рассматривается состав чисел 4 и 5. Для закрепления предлагаются игры: «Я знаю 5 имен девочек», «Назови 5 разных предметов мебели (овощей)», «Кто быстрее назовет». На первых порах детям разрешается загибать пальчики или называть слова-числительные, но к 6 годам дети должны научиться в уме удерживать состав числа.
|