Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Строение металлических материалов и их основные свойства






Металлы – один из классов конструкционных материалов, характеризующийся определенным набором свойств: К физическим свойствам металлов относят плотность, температуру плавления, цвет, блеск, непрозрачность, теплопроводность, электропроводность, тепловое расширение. По плотности металлы разделяют на легкие (до 3000 кг/м3) и тяжелые (от 6000 кг/м3 и выше); по температуре плавления — на легкоплавкие (до 973 К) и тугоплавкие (свыше 1173 К). Каждый металл или сплав обладает определенным, присущим ему цветом.

Прочностьспособность металла в определенных условиях и пределах не разрушаясь воспринимать те или иные воздействия, нагрузки. Это свойство учитывается при изготовлении и проектировании изделий, выборе того или иного металла, сплава. Наибольшее напряжение, которое может выдержать металл, не разрушаясь, называют пределом прочности, или временным сопротивлением разрыву. Образцы для измерения прочности подвергают испытанию на специальной разрывной машине, которая постепенно, с возрастающей силой растягивает образец до полного разрыва.

Упругость — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших деформацию.Наибольшее напряжение, после которого металл возвращается к своей первоначальной форме, называют пределом упругости. Если при дальнейшем повышении нагрузки напряжение превышает предел упругости и удлинение сохраняется после разгрузки образца, такое состояние называют остаточным удлинением. Далее наступает предел текучести, т.е. образец продолжает удлиняться без увеличения нагрузки.

Пластичность — свойство металла под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные (пластические) деформации после устранения этих сил. Данное свойство также определяется и измеряется на разрывной машине. Высокой пластичностью обладают золото, серебро, платина и их сплавы. Менее пластичны медь, алюминий, свинец. Это свойство металлов имеет большое значение в давильном и штамповочном производстве, волочении, прокатке.

Твердость — свойство металлов сопротивляться проникновению в них другого тела под действием внешней нагрузки, что необходимо учитывать при выборе инструментов для обработки металлов резанием. Например, важно знать твердость обрабатываемого металла, чтобы подобрать соответствующую фрезу или сверло. Испытания металлов на твердость проводят на специальных приборах — твердометрах.

Выносливость — свойство металлов сопротивляться действию повторных нагрузок. Температурные условия значительно влияют на механические свойства металлов: при нагревании их прочность понижается, а пластичность увеличивается; при охлаждений некоторые металлы становятся хрупкими, например, сталь некоторых марок, цинк и его сплавы. Нехладноломкими являются алюминий и медь.

Хрупкость — некоторые металлы обладают хрупкостью и при нормальных условиях, примером является серый чугун. В производстве изделий учитывается способность металлов поддаваться обработке, т.е. такие их технологические свойства, как ковкость, жидкотекучесть, литейная усадка, свариваемость, спекаемость, обрабатываемость резанием и некоторые другие.

Ковкостьспособность металлов подвергаться ковке и другим видам обработки давлением (прокатке, прессованию, волочению, штамповке). Металлы могут коваться в холодном состоянии (золото, серебро, медь), а также в горячем (сталь).

Износостойкостьспособность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкостьспособность материала сопротивляться действию агрессивных кислотных, щелочных сред.

Жаростойкостьэто способность материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочностьэто способность материала сохранять свои свойства при высоких температурах.

Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.

Антифрикционность – способность материала прирабатываться к другому материалу.

Жидкотекучесть — свойство расплавленного металла заполнять литейную форму. Высокой жидкотекучестью обладают цинк и его сплавы, чугун, бронза, олово, силумин (сплав алюминия с кремнием), латунь, некоторые магниевые сплавы. Низкой жидкотекучестью обладают сталь, красная медь, чистое серебро.

Литейная усадка —уменьшение объема металла при переходе из жидкого состояния в твердое. Это необходимо учитывать при изготовлении формы для отливки. Отливка получается всегда меньше модели, по которой сделана форма. Металлы с большой усадкой для литья почти не используют.

Свариваемость — способность металла прочно соединяться путем местного нагрева и расплавления свариваемых кромок изделия. Сплавы свариваются труднее, чистые металлы — легче. Легко свариваются изделия из малоуглеродистой стали. Плохо поддаются сварке чугун и высокоуглеродистые легированные стали.

Из химических свойств металлов и их сплавов наиболее важными в производстве художественных изделий являются растворение (взаимодействие с кислотами и щелочами) и окисление (антикоррозийная стойкость, т.е.стойкость к воздействию окружающей среды — газов, воды и т.д.).

Растворение (разъедание) — способность металлов растворяться в сильных кислотах и едких щелочах. Это свойство широко используется в различных областях производства художественных изделий. Растворение бывает частичное и полное. Частичное применяется для создания чистой поверхности изделия.

Окисление — способность металлов соединяться с кислородом и образовывать окислы металлов.

Данные свойства обусловлены особенностями строения металлов.

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определённым порядком – периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решётка. Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка – элемент объёма из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.

Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

размеры ребер элементарной ячейки. a, b, c – периоды решетки – расстояния между центрами ближайших атомов. В одном направлении выдерживаются строго определенными. углы между осями (· ). координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке. базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки.

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

примитивный – узлы решетки совпадают с вершинами элементарных ячеек; базоцентрированный – атомы занимают вершины ячеек и два места в противоположных гранях; объемно-центрированный – атомы занимают вершины ячеек и ее центр; гранецентрированный – атомы занимают вершины ячейки и центры всех шести граней; В металлических материалах, как правило, формируются три типа кристаллических решеток: объемноцентрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГП).

 

46. Медь и сплавы на её основе

Медь - металл красновато-розового цвета, имеет кристаллическую решетку ГЦК с периодом а=0, 3608 нм. Полиморфизмом не обладает. Температура плавления меди - 1083 °С - ниже, чем у железа, но медь имеет более высокую плотность (8, 96 г/см3).
Медь обладает хорошей технологичностью, прокатывается в тонкие листы, ленту. Из нее получают тонкую проволоку, она легко полируется, хорошо паяется и сваривается. Однако, она плохо обрабатывается резанием из-за высокой вязкости, имеет низкие литейные свойства, большую усадку.

Медь характеризуется высокими электро- и теплопроводностью, пластичностью и коррозионной стойкостью в атмосфере, воде и ряде других агрессивных сред.
В зависимости от содержания примесей в соответствии со стандартами различают следующие марки меди: М 00 (99, 99% меди), М 0 (99, 97% меди), М 1 (99, 9% меди), М 2 (99, 7% меди), М 3 (99, 5% меди).
Примеси снижают электротехнические свойства и коррозионную стойкость меди. Примеси в меди можно разделить на 3 группы:
1. Растворимые в меди элементы - Al, Fe, Ni, Sn, Zn, Ag - повышают прочность и твердость меди и используются в качестве легирующих добавок;
2. Нерастворимые элементы - Pb, Bi - ухудшают механические свойства меди и однофазных сплавов на ее основе. Они образуют легкоплавкие эвтектики, располагающиеся по границам зерен основной фазы, что вызывает красноломкость. Отрицательное их влияние проявляется уже при малых содержаниях (висмута - в тысячных, а свинца - в сотых долях процента). Висмут охрупчивает медь и ее сплавы. Свинец, снижая прочность, не вызывает охрупчивания. более того, свинец повышает антифрикционные свойства и обрабатываемость резанием медных сплавов, поэтому применяется для легирования двухфазных сплавов.
3. Нерастворимые примеси O, S, Se, Tl присутствуют в меди и ее сплавах в виде промежуточных фаз (например, Cu2O, Cu2S), которые образуют с медью эвтектики с высокой температурой плавления и не вызывают красноломкости. Кислород при отжиге меди в среде водорода вызывает “водородную болезнь”, которая может привести к разрушению металла под нагрузкой.

Конструктивные медные сплавы подразделяют на 2 основные группы:
1. Латуни - это сплавы на основе меди, основным легирующим элементом которых является цинк;
2. Бронзы - это сплавы на основе меди, основными легирующими элементами которых являются иные, кроме цинка, компоненты, прежде всего: олово (оловянные бронзы); алюминий (алюминиевые бронзы); кремний (кремнистые бронзы); бериллий (бериллиевые бронзы); свинец (свинцовые бронзы).
Кроме основных легирующих элементов, в состав медных сплавов входят и другие компоненты, вводимые для повышения определенных их свойств.
Латуни маркируют буквой Л, после которой указывают последовательно буквенные символы легирующих элементов (заглавными буквами русского алфавита). Далее числами, разделенными тире, указывают вначале среднее содержание меди, а затем - содержание иных, кроме цинка, легирующих элементов. Следовательно, содержание основного легирующего элемента латуней - цинка - в маркировке не указывается (и символ цинка также отсутствует) и определяется путем вычитания из 100% суммарного содержания меди и других элементов (по маркировке). В отсутствие иных, кроме цинка, легирующих элементов марка латуни обозначается буквой Л и двумя цифрами, указывающими содержание меди, например, латунь Л 90. Это так называемые двойные, или простые, латуни.
Бронзы маркируют буквами Бр, вслед за которыми, как и в латунях, следуют последовательно символы всех без исключения легирующих элементов. После всех символов в той же последовательности указывается процентное содержание соответствующих элементов. В отличие от латуней, в маркировке бронз содержание основного компонента - меди- не указывается. Оно определяется по разнице между 100% и суммарным содержанием легирующих элементов.
Легирующие элементы при маркировке медных сплавов имеют следующие символы: цинк - Ц, олово - О, марганец - Мц, железо - Ж, фосфор - Ф, бериллий - Б, алюминий - А, кремний - К, никель - Н, свинец - С, хром - Х и т.д.
Примеры маркировки медных сплавов:
- ЛС 59-1 - латунь, содержащая 59% Cu, 1% Pb, 40% Zn;
- ЛЖМц 59-1-1 - латунь, содержащая 59% Cu, 1% Fe, 1% Mn, 39% Zn:
- Бр ОЦСН 3-7-5-1 - бронза, содержащая 3% Sn, 7% Zn, 5% Pb, 1% Ni, 84% Cu:
- Бр А 5 - бронза, содержащая 5% Al и 95% Cu.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал