![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Задача классификации
Классификация является наиболее простой и одновременно наиболее часто решаемой задачей Data Mining. Ввиду распространенности задач классификации необходимо четкое понимания сути этого понятия. Приведем несколько определений. Классификация - системное распределение изучаемых предметов, явлений, процессов по родам, видам, типам, по каким-либо существенным признакам для удобства их исследования; группировка исходных понятий и расположение их в определенном порядке, отражающем степень этого сходства. Классификация - упорядоченное по некоторому принципу множество объектов, которые имеют сходные классификационные признаки (одно или несколько свойств), выбранных для определения сходства или различия между этими объектами. Классификация требует соблюдения следующих правил: · в каждом акте деления необходимо применять только одно основание; · деление должно быть соразмерным, т.е. общий объем видовых понятий должен равняться объему делимого родового понятия; · члены деления должны взаимно исключать друг друга, их объемы не должны перекрещиваться; · деление должно быть последовательным. Различают: · вспомогательную (искусственную) классификацию, которая производится по внешнему признаку и служит для придания множеству предметов (процессов, явлений) нужного порядка; · естественную классификацию, которая производится по существенным признакам, характеризующим внутреннюю общность предметов и явлений. Она является результатом и важным средством научного исследования, т.к. предполагает и закрепляет результаты изучения закономерностей классифицируемых объектов. В зависимости от выбранных признаков, их сочетания и процедуры деления понятий классификация может быть: · простой - деление родового понятия только по признаку и только один раз до раскрытия всех видов. Примером такой классификации является дихотомия, при которой членами деления бывают только два понятия, каждое из которых является противоречащим другому (т.е. соблюдается принцип: " А и не А"); · сложной - применяется для деления одного понятия по разным основаниям и синтеза таких простых делений в единое целое. Примером такой классификации является периодическая система химических элементов. Под классификацией будем понимать отнесение объектов (наблюдений, событий) к одному из заранее известных классов. Классификация - это закономерность, позволяющая делать вывод относительно определения характеристик конкретной группы. Таким образом, для проведения классификации должны присутствовать признаки, характеризующие группу, к которой принадлежит то или иное событие или объект (обычно при этом на основании анализа уже классифицированных событий формулируются некие правила). Классификация относится к стратегии обучения с учителем (supervised learning), которое также именуют контролируемым или управляемым обучением. Задачей классификации часто называют предсказание категориальной зависимой переменной (т.е. зависимой переменной, являющейся категорией) на основе выборки непрерывных и/или категориальных переменных. Например, можно предсказать, кто из клиентов фирмы является потенциальным покупателем определенного товара, а кто - нет, кто воспользуется услугой фирмы, а кто - нет, и т.д. Этот тип задач относится к задачам бинарной классификации, в них зависимая переменная может принимать только два значения (например, да или нет, 0 или 1). Другой вариант классификации возникает, если зависимая переменная может принимать значения из некоторого множества предопределенных классов. Например, когда необходимо предсказать, какую марку автомобиля захочет купить клиент. В этих случаях рассматривается множество классов для зависимой переменной. Классификация может быть одномерной (по одному признаку) и многомерной (по двум и более признакам). Многомерная классификация была разработана биологами при решении проблем дискриминации для классифицирования организмов. Одной из первых работ, посвященных этому направлению, считают работу Р. Фишера (1930 г.), в которой организмы разделялись на подвиды в зависимости от результатов измерений их физических параметров. Биология была и остается наиболее востребованной и удобной средой для разработки многомерных методов классификации. Рассмотрим задачу классификации на простом примере. Допустим, имеется база данных о клиентах туристического агентства с информацией о возрасте и доходе за месяц. Есть рекламный материал двух видов: более дорогой и комфортный отдых и более дешевый, молодежный отдых. Соответственно, определены два класса клиентов: класс 1 и класс 2. База данных приведена в таблице 5.1.
Таблица 5.1. База данных клиентов туристического агентства
Задача. Определить, к какому классу принадлежит новый клиент и какой из двух видов рекламных материалов ему стоит отсылать. Для наглядности представим нашу базу данных в двухмерном измерении (возраст и доход), в виде множества объектов, принадлежащих классам 1 (оранжевая метка) и 2 (серая метка). На рисунке 5.1приведены объекты из двух классов.
Решение нашей задачи будет состоять в том, чтобы определить, к какому классу относится новый клиент, на рисунке обозначенный белой меткой.
|