![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основні поняття і визначення теорії теплопровідності
Температурне поле. Будь-яке фізичне явище відбувається в просторі і в часі, тому вивчення його зводиться до знаходження просторово-часових характеристик величин, що визначають цей процес. Сукупність миттєвих значень фізичної величини у всіх точках розглянутої області називають полем цієї фізичної величини. У процесах теплопровідності основною фізичною величиною, характерною для даних процесів, є температура. Завдання теплопровідності полягає в знаходженні поля температур розглянутого об'єкта, тобто у визначенні залежності T = f (x, y, z, t), (1) де Т – температура, t – час, x. y, z - просторові координати в декартовій системі. Температура є величина скалярна, тому температурне поле – також скалярна величина. Відзначимо, що приведене вище визначення поля справедливе і для векторних величин, що показують і величину і напрямок /сила, швидкість, прискорення та ін./. Такі поля називають векторними полями фізичних величин. Розрізняють стаціонарне і нестаціонарне температурні поля. Нестаціонарним температурним полем називають поле, температура якого змінюється у просторі і в часі. У цьому випадку говорять, що температура є функція простору і часу. Прикладом математичного запису нестаціонарного температурного поля є рівняння (1). Стаціонарним температурним полем називається поле, температура якого в будь-якій його точці не змінюється з часом, тобто є функцією тільки координат T = f1(x, y, z), Теплові режими, що характеризуються нестаціонарними температурними полями, називаються несталими. У випадку, коли температурні поля стаціонарні, теплові режими називають сталими. Відповідно до числа просторових координат, від яких залежить температура, температурне поле може бути тривимірним (його запис має вид рівностей (1), (2), двомірним T = f2(x, y, t), і одновимірним T = f3(x, t), У багатьох задачах теплопровідності зручніше користуватися не декартовою, а криволінійною системою координат. У цьому випадку рівняння (1) має вигляд T = f(x1, x2, x3, t), де х1, х2, х3 – координати обраної криволінійної системи координат. Наприклад, циліндричної, сферичної та ін. Температурний градієнт. Якщо з'єднати точки тіла, що мають однакову температуру, то одержимо поверхню рівних температур, названу ізотермічною. Ізотермічні поверхні є поверхнями рівня температурного поля й описуються рівнянням T = f (x, y, z, t) = C, (3) де С = const. При перетині ізотермічної поверхні площиною одержимо сімейство ізотерм (ліній, що відповідають однаковій температурі). Якщо температурне поле неперервне, ізотермічні поверхні та ізотермічні лінії для даних температур не перетинаються між собою і не обриваються усередині нього, тому що в одній і тій же точці тіла не може бути двох різних значень температури. Розглянемо дві близькі ізотермічні поверхні з температурами Т і Т + DТ (рис.1). Рисунок 1– Температурне поле та його характеристики
Уздовж ізотермічної поверхні Т зміни температури не відбуваються, тому що ізотермічна поверхня – геометричне місце точок з однаковою температурою, а уздовж довільно обраного напрямку l, що перетинає ізотерму Т + DТ, спостерігається зміна температури. При цьому найбільший перепад температури на одиницю довжини буде спостерігатися при переміщенні за напрямком нормалі Межа відносності зміни температури DТ до відстані між ізотермами Т і Т + DТ по нормалі Dn при Dn ®0 називають градієнтом температури, тобто |grad T |= Градієнт температури є вектор, спрямований по нормалі до ізотермічної поверхні, причому за позитивний напрямок цього вектора приймається напрямок у бік зростання температури: grad T = де grad T = Відповідно до позначення(6) вектор
де
(grad T)x = (grad T)y = (grad T)z = Тепловий потік. Основний закон теплопровідності Фур'є. Переніс теплоти в об’єм тіла за допомогою теплопровідності може здійснюватися тільки при неоднорідному розподілі в ньому температури, тобто необхідною умовою виникнення усередині тіла теплового потоку є відмінний від нуля градієнт температури. Відомо, що теплота передається від областей з більшою температурою до точок з меншою температурою, тому тепловий потік на відміну від температури, що є скалярною величиною, має визначений напрямок. Позначимо повну кількість теплоти, яка пройшла через ізотермічну поверхню S за час t, через Qt. Тоді в одиницю часу dt через цю поверхню проходить кількість теплоти Q =
|