Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Общие свойства ферментов.Стр 1 из 5Следующая ⇒
В настоящее время многие отрасли промышленности – хлебопечение, виноделие, пивоварение, производство спирта, сыроделие, производство органических кислот, чая, аминокислот, витаминов, антибиотиков – основаны на использовании различных ферментативных процессов. Однако работа с ферментами, их использование требуют элементарной грамотности в вопросах ферментативной кинетики и способах регуляции ферментативной активности. Кроме того, необходимо всегда учитывать наличие в сырье собственных эндогенных ферментов, которые в процессе приготовления пищевых продуктов могут оказывать различное действие (как положительное, так и отрицательное). Ферменты – биологические катализаторы, ускоряющие химические реакции обмена веществ в организме. Механизм действия ферментов состоит в снижении энергии активации, необходимой молекуле, чтобы вступить в реакцию. Снижение энергии активации происходит в результате образования промежуточного нестойкого соединения – фермент-субстратного комплекса, что вызывает глубокую деформацию разрываемой связи. При этом фермент является начальным фактором; в дальнейшем катализируемая им реакция идет уже самостоятельно, этим объясняется тот факт, что для ферментативной реакции достаточно незначительная концентрация фермента. Ферментативная реакция состоит из 2-х стадий: на первой стадии происходит образование фермент-субстратного комплекса, переходному состоянию которого соответствует значительно более низкая энергия активации; на второй стадии этот комплекс распадается на продукты реакции и свободный фермент, который может взаимодействовать с новой молекулой субстрата. Это можно выразить следующим уравнением:
где Е – фермент; S – субстрат; ES – фермент-субстратный комплекс; Р – продукты реакции. В процессе ферментативной реакции различают 4 этапа: 1 – присоединение молекулы субстрат к ферменту и образование фермент-субстратного комплекса; 2 – изменение субстрата под действием фермента, делающее его доступным для химической реакции, т.е. активизация субстрата; 3 – химическая реакция; 4 – отделение продуктов реакции от фермента. На 1-ом этапе к субстратному центру присоединяется с помощью слабых взаимодействий та часть молекулы субстрата, которая не подвергается химическим превращениям. Для образования фермент-субстратного комплекса (ES) необходимо соблюдение трех условий, которые и определяют высокую специфичность действия фермента. Условия образования фермент-субстратного комплекса: 1 – структурное соответствие между субстратом и активным центром фермента. 2 – электростатическое соответствие активного центра фермента и субстрата, которое обусловлено взаимодействием противоположно заряженных групп. 3 – гибкость третичной структуры фермента – «индуцированное соответствие». Ферменты, являясь по своей природе белками, обладающими третичной или четвертичной структурой, имеют ряд особенностей, которые отличают их от неорганических катализаторов. В первую очередь, это огромная сила каталитического действия. Ферменты в 108 – 1020 раз повышают скорость катализируемых ими реакций. Так, энергия активации разложения Н2О2 без катализатора составляет 75, 6 кДж/моль, в присутствии неорганического катализатора (коллоидной платины) – 48, 14 кДж/моль и скорость ее увеличивается в 2х104 раз. В присутствии фермента каталазы энергия активации разложения Н2О2 снижается до 23, 1 кДж, а скорость реакции увеличивается в 2х1011 раз. Во-вторых, это специфичность действия ферментов. Способность фермента катализировать определенный тип реакции называют специфичностью. Специфичность бывает трех видов: 1 – относительная или групповая специфичность – фермент действует на определенный вид химической связи (например, фермент пепсин расщепляет пептидную связь); 2 – абсолютная специфичность – фермент действует только на один строго определенный субстрат (например, фермент уреаза расщепляет амидную связь только в мочевине); 3 –стехиометрическая специфичность – фермент действует только на один из стереоизомеров (например, фермент глюкозидаза сбраживает только D-глюкозу, но не действует на L-глюкозу). Специфичность фермента обеспечивает упорядоченность протекания реакций обмена веществ. Третьей особенностью ферментов является лабильность. Они подвержены влиянию различных факторов и могут изменять свою активность под действием рН, температуры, присутствия активаторов и ингибиторов и др.
|