Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Круговые сечения поверхностей второго порядка






Теорема о двойном прикосновении позволяет весьма просто строить круговые сечения тех поверхностей второго порядка, которые их имеют.

Для построения круговых сечений надо провести сферу, имеющую двойное прикосновение с данной поверхностью. В этом случае

линия пересечения поверхностей распадается на две плоские кривые, а так как эти линии принадлежат сфере, то они будут являться окружностями.

Пример 3. Построить круговые сечения эллиптического цилиндра (рисунок 12-7).

Из произвольной точки оси цилиндра описываем сферу такого радиуса, чтобы она касалась двух образующих цилиндра (см. вид спереди) и пересекала его (см. вид сверху).

Точки А и В будут точками двойного прикосновения, т.к. в них можно провести общие касательные плоскости Г¹ и Г² к цилиндру и сфере.

Линия пересечения сферы с эллиптическим цилиндром будет состоять из двух плоских кривых - окружностей.


Пример 4. Построить круговые сечения эллиптического конуса

(рисунок 12-8).

Для этого опишем сферу из некоторого центра 0, лежащего на оси конуса так, чтобы она имела двойное прикосновение с конусом и пересекала его.

Точки А и В - точки двойного прикосновения, т.к. можно провести две общие касательные плоскости Б и Д.

Линия пересечения распадается на пару окружностей.

Следовательно, если пересекать поверхность эллиптического конуса плоскостью под углом a к его оси, то получим в сечении окружность.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал