Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Параллельное проецирование
Широкое распространение в практике получил частный случай центрального проецирования, когда центр проецирования S удален в бесконечность от плоскости проекций П¢. Проецирующие лучи при этом практически параллельны между собой, поэтому данный способ получил название параллельного проецирования, а полученные с его помощью изображения (проекции) фигуры на плоскости называют параллельными проекциями.
Возьмем в пространстве какую-либо фигуру, например линию АВ (рисунок1-2). Спроецируем ее на плоскость проекций П¢. Направление проецирования укажем стрелкой S. Чтобы спроецировать точку А на плоскость П¢ надо провести через эту точку параллельно направлению S прямую линию до пересечения с плоскостью проекций П¢. Полученная точка А¢ называется параллельной проекцией точки А. Аналогично находим проекции других точек линии АВ. Совокупность всех проецирующих лучей определяет (представляет) в пространстве цилиндрическую поверхность, поэтому такой способ проецирования называют цилиндрическим. 2.3Основные свойства параллельного проецирования 1) Проекцией точки является точка. АÞ А¢ (рисунок 1-3а).
2) Проекцией прямой является прямая ( свойство прямолинейности ). Действительно, при параллельном проецировании все проецирующие лучи будут лежать в одной плоскости Е. Эта плоскость пересекает плоскость проекций по прямой линии l¢ (рисунок 1-3б). 3) Если в пространстве точка принадлежит линии (лежит на ней), то проекция этой точки принадлежит проекции линии (свойство принадлежности), (рисунок 1-Зб, точка М). 4) Проекции взаимно параллельных прямых также взаимно параллельны, т.к. 5) Если отрезок прямой делится точкой в некотором отношении, то проекция отрезка делится проекцией этой точки в том же отношении. Докажем это: введем СЕ//A’С' и DВ//С'B', тогда ½ АС½ /½ СВ½ =½ СЕ½ /½ DB½ =½ A¢ C¢ ½ /½ C¢ B¢ ½. 6) Параллельный перенос плоскости проекций или фигуры (без поворота) не меняет вида и размеров проекции фигуры (рисунок1-4).
Рассмотренные способы проецирования позволяют однозначно решать прямую задачу - по данному оригиналу строить его проекционный чертеж. Однако только одна параллельная проекция без каких-либо дополнений недостаточна для полного представления о том, каким является этот предмет в натуре. По такому изображению (рисунок 1-6) нельзя определить не только форму и размеры предмета, но и его положение в пространстве, т.е. параллельная проекция не обладает свойством обратимости. Для получения обратимых чертежей проекционный чертеж дополняют необходимыми данными. Способы дополнения бывают различными. Мы в курсе начертательной геометрии будем рассматривать два вида обратимых чертежей: 1. комплексные чертежи в ортогональных проекциях; 2. аксонометрические чертежи.
|