Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Определение длины отрезка и углов его наклона к плоскостям уровня. При решении различных общегеометрических задач часто возникает необходимость определения натуральной величины отрезка по его комплексному чертежу.






При решении различных общегеометрических задач часто возникает необходимость определения натуральной величины отрезка по его комплексному чертежу.

Если отрезок принадлежит прямой уровня - горизонтали, фронтали или профильной прямой, то в этом случае натуральная величина отрезка имеется на одном из видов:

· для горизонтали - на виде сверху;

· для фронтали - на виде спереди;

· для профильной прямой - на виде слева.

Если же отрезок принадлежит прямой общего положения, то на всех проекциях (видах спереди, сверху, слева) его изображение будет меньше самого отрезка.

Для определения натуральной величины отрезка и углов наклона его к плоскостям уровня применяют способ прямоугольного треугольника (рисунок 4-2).

Рассмотрим DАВВ*(рисунок 4-2). Здесь АВ=ç АВ÷; ВВ*=DН (разность высот точек А и В - концов отрезка.); АВ*= АВ (проекция отрезка).

Таким образом если, имея комплексный чертеж отрезка, мы сумеем построить прямоугольный треугольник катетами которого будут –1)одна из проекций отрезка и 2)разность измерений концов отрезка, отмеряемых от соответствующей первому катету плоскости проекций (от Г- высот, от Ф - глубин, от П – широт), то гипотенуза полученного треугольника будет равна натуральной величине отрезка.

При этом угол между гипотенузой треугольника и проекцией отрезка равен углу наклона отрезка к плоскости проекций (Г, Ф, или П соответственно), (рисунок 4-2б).

Строить такой прямоугольный треугольник по двум катетам можно в любом удобном месте чертежа.


Пример 1. Определить угол наклона отрезка АВ к фронтальной плоскости (рисунок 4-3).

Для определения указанного угла удобно построить прямоугольный треугольник, приняв фронтальную проекцию отрезка в качестве его первого катета. Вторым катетом треугольника в этом случае будет разность глубин концов отрезка измеренная на горизонтальной проекции (виде сверху).


Угол α между первым катетом и гипотенузой и будет искомым. Попутно определится и длина отрезка равная длине гипотенузы треугольника.

Пример 2. Отложить на проекциях прямой m от точки А отрезок АВ, натуральная величина которого равна 50 мм (рисунок 4-4).Можно предложить такой способ решения задачи. Возьмем на указанной прямой произвольную точку С и определим натуральную величину полученного отрезка АС способом прямоугольного треугольника.

Поскольку на гипотенузе треугольника имеем натуральные длины отрезков, отложим здесь от точки А заданную величину 50 мм. Затем проведем прямую параллельно второму катету треугольника до пересечения с проекцией отрезка АС.

Полученная точка будет являться искомой точкой В. Вторую проекцию точки В находим проецируя точку В на вторую проекцию отрезка.



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал