Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тема 1 Матрицы и определителиСтр 1 из 4Следующая ⇒
Для первого курса заочной формы обучения
Челябинск Математика: Методические рекомендации по выполнению домашней контрольной работы / М.А.Сагадеева, И.Ю.Коробейникова - Челябинск: ОУ ВО Южно-Уральский институт управления и экономики, 2015.- 25с.
Ó Издательство ОУ ВО Южно-Уральский институт управления и экономики», 2015
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
Цель курса математики в системе подготовки экономиста – освоение необходимого математического аппарата. Это необходимо для анализа моделирования и решения прикладных экономических задач, в том числе с использованием ЭВМ. Задачиизучения математики как фундаментальной дисциплины состоят в развитии логического и алгоритмического мышления, в выработке умения моделировать реальные экономические процессы.
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ ЗАДАНИЙ
РАЗДЕЛ 1ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Тема 1 Матрицы и определители
Определение матрицы. Виды матриц. Транспонирование матриц. Алгебраические операции над матрицами. Определители второго, третьего порядков и матрицы n-го порядка. Теорема Лапласа. Присоединенная и обратная матрицы. Алгоритм вычисления обратной матрицы. Ранг матрицы как наивысший порядок ее миноров, отличных от нуля. Вычисление ранга матрицы с помощью элементарных преобразований. Линейная комбинация, линейная зависимость и независимость строк (столбцов) матрицы. Теорема о ранге матрицы — максимальном числе ее линейно независимых строк (столбцов) Надо хорошо уяснить, что матрица — это прямоугольная таблица, составленная из mn чисел, расположенных в m строках и n столбцах. Необходимо знать, как устанавливаются размеры матрицы и ее порядок, уметь выполнять транспонирование матриц, алгебраические операции над ними (умножение матрицы на число, сложение, вычитание, умножение матриц). Необходимо усвоить следующее: строки обозначаются индексом ”i”, столбцы индексом ”j”. Поэтому любой элемент матрицы можно обозначить aij. Это означает, что элемент aij находится в i-ой строке и в j-ом столбце. Например, a11 – элемент первой строки и первого столбца; a23–элемент второй строки и третьего столбца. Индекс с «i» растет всегда «вниз», а индекс «j» – растет вправо. Размер матрицы m х n означает, что конечные величины i и j равны соответственно m и n, т.е. iкон=m, jкон=n. При вычислении определителей необходимо отметить, что определитель есть число и вычисляется по определенным правилам. Необходимо рассмотреть правило вычисления определителей второго порядка и правило треугольника или правило Сарруса для вычисления определителей третьего порядка. В качестве универсального метода вычисления определителей необходимо рекомендовать вычисление на основе теоремы Лапласа. Для этого нужно знать определение минора (вычисление), определение алгебраического дополнения Aij=(-1)i+jMij и саму теорему Лапласа.. Мало того, нужно обратить внимание и на то, что определители порядка больше трех вычисляются с помощью теоремы Лапласа. Относительные трудности возникают при усвоении операции умножения матриц. Необходимо твердо усвоить формальное правило умножения и связанное с ним условие существования произведения АВ матриц А и В: число столбцов матрицы А должно быть равно числу строк матрицы В. Одна из особенностей операции умножения состоит в том, что произведение матриц в общем случае не коммутативно, т.е. АВ ¹ ВА. Даже если А и В – квадратные матрицы, в общем случае АВ ¹ ВА, в чем нетрудно убедиться на любом частном примере. Другая особенность произведения матриц состоит в том, что произведение двух ненулевых матриц может оказаться нулевой матрицей. Например, можно легко показать, что произведение матриц есть нулевая матрица (сравните: во множестве действительных чисел произведение равно нулю тогда, когда хотя бы один из сомножителей равен нулю). = Нужно знать определение присоединенной и обратной матриц, уметь их вычислять, знать, что для существования матрицы А-1, обратной матрице А, необходимо и достаточно, чтобы матрица А была невырожденной (неособенной). Проверить правильность вычисления обратной матрицы можно, составив произведение АА-1 или А-1 А. Если оно является единичной матрицей Е, то, в соответствии с определением, матрица А -1 вычислена правильно. Нужно уметь вычислять определители второго и третьего порядков (метод треугольника) и более высших порядков. При вычислении определителей нужно активно использовать свойства определителей 2, 4, 5, 6, 8. Теорему Лапласа нужно знать твердо и уметь ее использовать для практики. Вычисление обратной матрицы осуществлять по алгоритму, изложенному в. Нужно четко усвоить в алгоритме, что обратная к исходной матрице существует. После этого определяется транспонированная к исходной матрица. Именно для транспонированной матрицы А¢ ищутся алгебраические дополнения Aij. Из алгебраических дополнений к транспонированной матрице составляется присоединенная (союзная) матрица. Если известна союзная матрица и определитель исходной матрицы, то вычисляется обратная матрица A-1= / . Обратная матрица будет использоваться для решения систем линейных уравнений. Пример: Найти матрицу С=В¢ × А¢ × А× В, если А= , В= . Решение: Алгоритм решения: 1. Находим матрицы В¢, А¢, транспонированные к матрицам А и В. А¢ = , В¢ = . 2. Находим произведение матриц: В¢ × А¢ = × = . Это возможно ибо число столбцов матрицы В¢ равно числу строк матрицы А¢. 3. Находим произведение матриц: А× В= = . 4. Находим произведение С=В¢ × А¢ × А× В= = (10) Ответ: C = (10)
|