Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Введение. Одним из наиболее распространенных методов поиска корней уравнений является метод Ньютона и его модификации
Одним из наиболее распространенных методов поиска корней уравнений является метод Ньютона и его модификации. Пусть требуется решить уравнение
Поскольку x – корень уравнения, то
Таким образом, если нам известно приближенное значение корня уравнения, то полученное уравнение позволяет его уточнить. Понятно, что процесс уточнения можно повторять многократно, до тех пор, пока значение функции не будут отличаться от нуля на величину меньшую, чем заданная точность поиска. Очередное k -е приближение находится по формуле
Ограничившись в разложении только первыми двумя членами, мы фактически заменили функцию f(x) на прямую линию, касательную в точке x 0, поэтому метод Ньютона еще называют методом касательных. Далеко не всегда бывает удобно находить аналитическое выражение для производной функции. Однако, в этом и нет особой необходимости: поскольку на каждом шаге мы получаем приближенное значение корня, можно для его вычисления использовать приближенное значение производной.
В качестве малой величины
С другой стороны, для вычисления производной можно воспользоваться значениями функции, полученными на двух предыдущих шагах,
В таком виде метод называется методом секущих (secant method). При этом, однако, возникает проблема с вычислением первого приближения. Обычно полагают, что Идея метода секущих развивается в методе Мюллера. Однако в этом методе для нахождения очередного приближения используются три предыдущие точки. Иными словами, метод использует не линейную, а квадратичную интерполяцию функции. Расчетные формулы метода следующие[1]:
Знак перед корнем выбирается так, чтобы абсолютное значение знаменателя было максимальным. Поскольку поиск корня заканчивается, когда выполнится условие В том случае, когда известен интервал, на котором расположен корень, можно воспользоваться иными методами нахождения решения уравнения. В методе Риддера (Ridder’s method) вычисляют значение функции в середине интервала
Метод Брента (Brent method) соединяет быстроту метода Риддера и гарантированную сходимость метода деления отрезка пополам. Метод использует обратную квадратичную интерполяцию, то есть ищет x как квадратичную функцию y. На каждом шаге проверяется локализация корня. Формулы метода достаточно громоздки и мы не будем их приводить. Особые методы применяют для поиска корней полинома. В этом случае могут быть найдены все корни. После того как один из корней полинома найден, степень полинома может быть понижена, после чего поиск корня повторяется. Метод Лагерра (Laguerre’s method) основывается на следующих соотношениях для полиномов
Предполагают, что корень x 1 находится на расстоянии a от текущего приближения, в то время как все другие корни находятся на расстоянии b:
откуда
Знак перед корнем выбирают с таким расчетом, чтобы получить наибольшее значение знаменателя. Еще один метод, который применяют для поиска корней полиномов, – метод сопровождающей матрицы (companion matrix). Можно доказать, что матрица
называемая сопровождающей матрицей для полинома
|