Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Управление памятью. Иерархия запоминающих устройств. Кэширование. Буферизация данных.






Память вычислительной машины представляет собой иерархию запоминающих устройств (ЗУ), отличающихся средним временем доступа к данным, объемом и стоимостью хранения одного бита (рис. 1). Фундаментом этой пирамиды запоминающих устройств служит внешняя память, как правило, представляемая жестким диском. Она имеет большой объем (десятки и сотни гигабайт), но скорость доступа к данным является невысокой. Время доступа к диску измеряется миллисекундами.

На следующем уровне располагается более быстродействующая (время доступа 1 равно примерно 10-20 наносекундам) и менее объемная (от десятков мегабайт до нескольких гигабайт) оперативная память, реализуемая на относительно медленной динамической памяти DRAM.

Для хранения данных, к которым необходимо обеспечить быстрый доступ, используются компактные быстродействующие запоминающие устройства на основе статической памяти SRAM, объем которых составляет от нескольких десятков до нескольких сотен килобайт, а время доступа к данным обычно не превышает 8 нс.

Все перечисленные характеристики ЗУ быстро изменяются по мере совершенствования вычислительной аппаратуры. В данном случае важны не абсолютные значения времени доступа или объема памяти, а их соотношение для разных типов Запоминающих устройств.

И, наконец, верхушку в этой пирамиде составляют внутренние регистры процессора, которые также могут быть использованы для промежуточного хранения данных. Общий объем регистров составляет несколько десятков байт, а время доступа определяется быстродействием процессора и равно в настоящее время примерно 2-3 нс.

Таким образом, можно констатировать печальную закономерность — чем больше объем устройства, тем менее быстродействующим оно является. Более того, стоимость хранения данных в расчете на один бит также увеличивается с ростом быстродействия устройств. Однако пользователю хотелось бы иметь и недорогую, и быструю память. Кэш-память представляет некоторое компромиссное решение этой проблемы.

Кэш-память, или просто кэш (cache), — это способ совместного функционирования двух типов запоминающих устройств, отличающихся временем доступа и стоимостью хранения данных, который за счет динамического копирования в «быстрое» ЗУ наиболее часто используемой информации из «медленного» ЗУ позволяет, с одной стороны, уменьшить среднее время доступа к данным, а с другой стороны, экономить более дорогую быстродействующую память.

Неотъемлемым свойством кэш-памяти является ее прозрачность для программ и пользователей. Система не требует никакой внешней информации об интенсивности использования данных; ни пользователи, ни программы не принимают никакого участия в перемещении данных из ЗУ одного типа в ЗУ другого типа, все это делается автоматически системными средствами.

Кэш-памятью, или кэшем, часто называют не только способ организации работы двух типов запоминающих устройств, но и одно из устройств — «быстрое» ЗУ.

Кэширование — это универсальный метод, пригодный для ускорения доступа к оперативной памяти, к диску и к другим видам запоминающих устройств. Если кэширование применяется для уменьшения среднего времени доступа к оперативной памяти, то в качестве кэша используют быстродействующую статическую память. Если кэширование используется системой ввода-вывода для ускорения доступа к данным, хранящимся на диске, то в этом случае роль кэш-памяти выполняют буферы в оперативной памяти, в которых оседают наиболее активно используемые данные. Виртуальную память также можно считать одним из вариантов реализации принципа кэширования данных, при котором оперативная память выступает в роли кэша по отношению к внешней памяти — жесткому диску. Правда, в этом случае кэширование используется не для того, чтобы уменьшить время доступа к данным, а для того, чтобы заставить диск частично подменить оперативную память за счет перемещения временно неиспользуемого кода и данных на диск с целью освобождения места для активных процессов. В результате наиболее интенсивно используемые данные «оседают» в оперативной памяти, остальная же информация хранится в более объемной и менее дорогостоящей внешней памяти.

 

16 Подобный подход по сравнению с отсутствием буферизации обеспечивает повышение быстродействия, поскольку пользовательский процесс может обрабатывать один блок данных в то время, когда происходит считывание следующего блока.

Пусть Т – время, необходимое для ввода одного блока, а С – для вычислений, выполняющихся между запросами на ввод-вывод. Без буферизации время выполнения, приходящееся на один блок, будет равно Т + С. При использовании одинарной буферизации время будет равно max [С, T] + M, где М – время перемещения данных из системного буфера в пользовательскую память. В большинстве случаев T + C > max [C, T] + M.

Схема одинарного буфера может быть применена и при поточно-ориентированном вводе-выводе – построчно или побайтно (в строчных принтерах, терминалах и др.). Например, при операции вывода пользовательский процесс может разместить в буфере строку и продолжить работу. Улучшить схему одинарной буферизации можно путем использования двух буферов. Теперь процесс выполняет передачу данных в один буфер (или считывает из него), в то время как ОС освобождает (или заполняет) другой. Эта технология известна как двойная буферизация, или сменный буфер.

Время выполнения при блочно-ориентированной передаче можно грубо оценить как max [C, T]. Таким образом, если C < = T, то блочно-ориентированное устройство может работать с максимальной скоростью. Если C > T, то двойная буферизация избавляет процесс от необходимости ожидания завершения ввода-вывода.

Двойной буферизации может оказаться недостаточно, если процесс часто выполняет ввод или вывод. Решить проблему помогает наращивание количества буферов. Если буфер больше двух, схема именуется циклической буферизацией.

Буферизация данных позволяет не только согласовать скорости работы процессора и внешних устройств, но и решить другую задачу – сократить количество реальных операций ввода-вывода за счет кэширования данных. Дисковый кэш является непременным атрибутом подсистем ввода-вывода практически всех операционных систем и значительно сокращает время доступа к хранимым данным.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал