![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Арматурные сварные изделия.
Сварные арматурные изделия подразделяют на типы: 1)арматурные сетки; 2)арматурные каркасы; 3)отдельные стержни арматуры со сварными стыковыми соединениями по длине стержня. Арматурные сетки Сварные арматурные сетки изготовляют из стержней, расположенных в двух взаимно перпендикулярных направлениях и соединенных в местах пересечений сваркой (крестообразное соединение). Сетки изготовляют с квадратными или прямоугольными ячейками. В одном направлении сетки имеют стержни одинакового диаметра. Сетки изготовляют с расположением рабочей арматуры: в одном направлении (продольном или поперечном) и распределительной арматурой в другом направлении; в обоих направлениях. Сетки изготовляют плоскими или рулонными. Рулонными изготовляют сетки с продольными стержнями из арматурной проволоки диаметрами до 5 мм включительно, при поперечных стержнях диаметрами до 10 мм включительно. Сетки с продольными и поперечными стержнями диаметрами от 3 до 10 мм включительно изготовляют с поперечными стержнями на всю ширину сетки или со смещенными поперечными стержнями. Арматурные каркасы Сварные арматурные каркасы изготовляют из продольных и поперечных стержней, соединенных в местах пересечений сваркой (крестообразное соединение). Продольные и поперечные стержни каркасов в одном направлении имеют стержни одинакового или разных диаметров. Каркасы изготовляют плоскими или пространственными. Плоские каркасы имеют поперечные стержни, расположенные в одной плоскости и предназначенные для армирования линейных изгибаемых или растянутых железобетонных элементов и конструкций с малой шириной поперечного сечения. Пространственные каркасы изготовляют с поперечными стержнями, расположенными в разных плоскостях.
11. Арматурные проволочные изделия. Проволочная арматура. Арматурную проволоку в зависимости от механических свойств подразделяют на обыкновенную и высокопрочную, а по форме поверхности: - на гладкую и периодического профиля. Обыкновенную арматурную проволоку изготовляют из низкоуглеродистой стали. Диаметр проволоки - 3; 4 и 5 мм. Она может быть двух классов: B-I - гладкая; Вр-1 - периодического профиля. Проволока хорошо сваривается, что позволяет использовать ее в составе арматурных изделий. Периодический профиль проволоки класса Вр-1 образован диаметрально расположенными на ее поверхности вмятинами. Размеры рифов (вмятин) зависят от диаметра проволоки. Глубина вмятин h = 0, 15...0, 25 мм, шаг s = 2...3 мм, длина выступа L = 0, 6... 1 мм. Из проволоки класса Вр-1 изготовляют сварные сетки и каркасы, которые используют в качестве ненапрягаемой рабочей арматуры, из гладкой проволоки класса B-I - только конструктивную арматуру. Высокопрочную арматурную проволоку изготовляют из углеродистой стали путем многократного волочения и низкотемпературного отпуска. Ее также подразделяют на классы: В-П -гладкая; Вр-11 - профилированная. Диаметр проволоки - 3...8 мм с градацией через 1 мм. Профиль проволоки класса Вр-П несколько отличается от профиля проволоки класса Вр-1. Расстояние между центрами вмятин s в зависимости от диаметра проволоки составляет 6, 5...7 мм, а глубина вмятин h = 0, 15...0, 4 мм. Радиус цилиндрической поверхности вмятин R не зависит от диаметра проволоки и равен 8 мм. По механическим свойствам высокопрочная проволока значительно превосходит обыкновенную. Например, предел текучести проволоки диаметром 3 мм класса B-I составляет 3500 Н, а класса В-П - 10600 Н. Проволоку классов В-И и Вр-И не сваривают, так как в результате высокотемпературного нагрева прочность ее может сильно понизиться. Допускается лишь сваривать стыки конструктивной (монтажной) арматуры, используя специальные приемы сварки. Из проволоки классов В-П и Вр-П изготовляют напрягаемую арматуру железобетонных элементов большой протяженности -свыше 12 м. Особенно эффективна такая проволока в предварительно напряженных конструкциях, испытывающих в процессе эксплуатации постоянное давление жидкостей, газов или сыпучих тел, например в силосах. Основной механической характеристикой обыкновенной арматурной проволоки служит ее временное сопротивление разрыву (предел прочности), а высокопрочной - условный предел текучести. Эти характеристики возрастают с уменьшением диаметра проволоки Арматурные канаты состоят из нескольких проволок, свитых так, чтобы было исключено их раскручивание. Вокруг центральной проволоки по спирали в одном или в нескольких концентрических слоях располагают проволоки одного диаметра. В процессе изготовления каната проволоки деформируются и плотно прилегают одна к другой. Благодаря периодическому профилю создается надежное сцепление канатов с бетоном. Канаты выпускают в основном двух классов - К-7 и К-19. В семипроволочных стальных канатах класса К-7 применяют углеродистую проволоку. Канаты класса К-7 изготовляют номинальных диаметров 6... 15 мм с градацией в 3 мм. Прочностные характеристики канатов примерно такие же, что и у проволоки класса Вр-П. Сечение 19-проволочных канатов класса К-19 представляет собой семипроволочную прядь, на которую навиты 12 соприкасающихся проволок. Номинальный диаметр канатов этого класса- 14 мм. Выпускают также многопрядные канаты класса К-w. Их изготовляют из большого числа тонких проволок диаметром 1...3 мм. Такие канаты обладают повышенной деформативностью, поэтому перед применением их подвергают предварительной обтяжке. Арматурные канаты - наиболее эффективная напрягаемая арматура. Их используют в крупноразмерных конструкциях, например в балках длиной свыше 12 м, а также для армирования предварительно напряженных элементов, находящихся под давлением газов, жидкостей и сыпучих тел. Канаты поставляют намотанными на деревянные барабаны или в бухтах. Длина отрезка каната по стандарту должна быть не менее 1000 м. В процессе армирования конструкций допускается сваривать канаты только по особому режиму с применением опрессовываемых гильз.
12. Реологические свойства арматурной стали. Усталостное разрушение. Динамическая прочность, Высокотемпературный нагрев Реологические свойства арматурной стали характеризуются ползучестью и релаксацией. Ползучесть арматурной стали нарастает с повышением напряжений и ростом температуры. Релаксация, или уменьшение напряжений, наблюдается в арматурных стержнях при неизменной длине — отсутствии деформаций. Релаксация зависит от механических свойств и химического состава арматурной стали, технологии изготовления и условий применения и др. Значительной релаксацией обладают упрочненная вытяжкой проволока, термически упрочненная арматура, а также высоколегированная стержневая арматура. Релаксация горячекатаных низколегированных арматурных сталей незначительна. Как показывают опыты, наиболее интенсивно релаксация развивается в течение первых часов, однако она может продолжаться длительное время. Релаксация арматурной стали оказывает большое влияние на работу предварительно напряженных конструкций, так как приводит к частичной потере искусственно созданного предварительного напряжения. Усталостное разрушение арматурной стали наблюдается при действии многократно повторяющейся нагрузки, оно носит хрупкий характер. Предел выносливости арматурной стали в железобетонных конструкциях зависит от числа повторений нагрузки п, характеристики цикла p=omtn/< Tmax, качества сцепления и наличия трещин в бетоне растянутой зоны и др. С увеличением числа циклов предел выносливости уменьшается. Термически упрочненные арматурные стали имеют пониженный предел выносливости. Динамическая прочность арматурной стали наблюдается при нагрузках большой интенсивности, действующих на сооружение за весьма короткий промежуток времени. В условиях высокой скорости деформирования арматурные стали работают упруго при напряжениях, превышающих физический предел текучести, при этом происходит запаздывание пластических деформаций. Превышение динамического предела текучести над статическим пределом текучести связано с временем запаздывания. В меньшей степени динамическое упрочнение проявляется на условном пределе текучести а0, 2 сталей легированных и термически упрочненных (не имеющих явно выраженной площадки текучести) и практически совсем не отражается на пределе прочности аи всех видов арматурных сталей, в том числе высокопрочной проволоки и изделий из нее. Высокотемпературный нагрев арматурных сталей приводит к изменению структуры металла и снижению прочности. Так, при нагреве до 400 °С предел текучести горячекатаной арматуры класса А-111 уменьшается на 30 %, классов A-II и A-I — на 40 %, модуль упругости уменьшается - на 15 %. Заметное проявление ползучести арматуры в конструкциях под нагрузкой наблюдается при температуре свыше 350 °С. При нагреве происходит отжиг и потеря наклепа арматуры, упрочненной холодным деформированием, поэтому временное сопротивление у высокопрочной арматурной проволоки снижается интенсивнее, чем у горячекатаной арматуры. После нагрева и последующего охлаждения прочность горячекатаной арматурной стали восстанавливается полностью, а прочность высокопрочной арматурной проволоки — лишь частично.
|